Theory and practice of use of dipeptidyl peptidase-4 inhibitors: focus on evogliptin

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅或者付费存取

详细

Treatment of type 2 diabetes mellitus (DM2) is an important task of modern medicine against the background of the inexorable spread of the disease. Recently; the possibilities of glucose-lowering pharmacotherapy have significantly expanded due to a deepening of understanding of the pathophysiological mechanisms of the disease. The importance of the incretin system in the regulation of carbohydrate metabolism; a target for incretin-directed therapy; is discussed. The class of dipeptidyl peptidase-4 inhibitors (DPP-4 inhibitors; gliptins) refers to drugs with incretin activity. The mechanisms of action of DPP-4 inhibitors are revealed; and the advantages of drugs in this group are emphasized. Several DPP-4 inhibitors are registered in the Russian Federation: alogliptin; vildagliptin; gemigliptin; gosogliptin; linagliptin; saxagliptin; sitagliptin; evogliptin. The article is devoted to the selection of the optimal drug from the DPP-4 group. The appearance on the market of a new Russian drug from this group of DPP-4 inhibitors; evogliptin; will make it possible to provide DM2 patients with modern; effective; affordable and high-quality treatment. The results of clinical studies of the effectiveness and safety of evogliptin are presented.

全文:

受限制的访问

作者简介

Elena Biryukova

A.I. Yevdokimov Moscow State University of Medicine and Dentistry

编辑信件的主要联系方式.
Email: lena@obsudim.ru
ORCID iD: 0000-0001-9007-4123

Dr. Sci. (Med.), Professor at the Department of Endocrinology and Diabetology; A.I. Yevdokimov

俄罗斯联邦, Moscow

参考

  1. Canto E.D.; Ceriello A.; Ryden; et al. Diabetes as a cardiovascular risk factor: An overview of global trends of macro and micro vascular complications Eur J Prev Cardiol. 2019;26(Suppl. 2):25–32. doi: 10.1177/2047487319878371.
  2. Портал IDF. Атлас диабета 9-е издание; 2019 [Электронный ресурс]; 4 февраля 2020. [IDF portal. Atlas of Diabetes 9th edition; 2019 [Electronic resource]; February 4; 2020. (In Russ.)]. URL: https://diabetesatlas.org/en/resources
  3. Harding J.L.; Pavkov M.E.; Magliano D.J.; et al. Global trends in diabetes complications: a review of current evidence Diabetologia. 2019;62:3–16. doi: 10.1007/s00125-018-4711-2.
  4. World Health Organization. Diabetes. [cited 25 April 2021]. In: World Health Organization [Internet]. Available from: https://www.who.int/news-room/fact-sheets/detail/diabetes
  5. Holman R.R.; Paul S.K.; Bethel M.A.; et al. 10-year follow-up of intensive glucose control in type 2 diabetes. N Engl J Med. 2008;359(15):1577–89. doi: 10.1056/nejmoa0806470.
  6. Gæde P.; Oellgaard J.; Carstensen B.; et al. Years of life gained by multifactorial intervention in patients with type 2 diabetes mellitus and microalbuminuria: 21 years follow-up on the Steno-2 randomised trial. Diabetol. 2016;59:2298. doi: 10.1007/s00125-016-4065-6.
  7. American Diabetes Association. Cardiovascular Disease and Risk Management: Standards of Medical Care in Diabetes; 2020. Diab Care. 2020;43(Suppl. 1):S111–34. doi: 10.2337/dc20-s010.
  8. Алгоритмы специализированной медицинской помощи больных сахарным диабетом. Под ред. И.И. Дедова; М.В. Шестаковой; А.Ю. Майорова. 10-й выпуск. М.; 2021. [Algorithms for specialized medical care for patients with diabetes. Ed. by I.I. Dedov; M.V. Shestakova; A.Yu. Mayorov. 10th issue. M.; 2021. (In Russ.)]. doi: 10.14341/DM221S1.
  9. ADA Professional Practice Committee. Pharmacologic Approaches to Glycemic Treatment: Standards of Medical Care in Diabetes-2022. Diab. Care. 2022;45(Suppl. 1):S125–43. doi: 10.2337/dc22-S009.
  10. Omar B.; Ahren B. Pleiotropic mechanisms for the glucose-lowering action of DPP-4 inhibitors. Diabetes. 2014;63(7):2196–202. doi: 10.2337/db14-0052.
  11. Carr R.D. Drug development from the bench to the pharmacy: with special reference to dipeptidyl peptidase-4 inhibitor development. Diab Med. 2016;33:718–22. doi: 10.1111/dme.13066.
  12. Baggio L.L.; Drucker D.J. Biology of incretins: GLP-1 and GIP. Gastroenterol. 2007;132(6):2131–57. doi: 10.1053/j.gastro.2007.03.054.
  13. Cantini G.; Mannucci E.; Luconi M. Perspectives in GLP-1 research: new targets; new receptors. Trends Endocrinol Metab. 2016;27(6):427–38. doi: 10.1016/j.tem.2016.03.017.
  14. Vilsboll T.; Holst J.J. Incretins; insulin secretion and Type 2 diabetes mellitus. Diabetol. 2004;47:357–66. doi: 10.1007/s00125-004-1342-6.
  15. Drucker D.J. Mechanisms of action and therapeutic application of glucagon-like peptide-1. Cell Metab. 2018;27:740–56. doi: 10.1016/j.cmet.2018.03.001.
  16. Lee Y.S.; Lee C.C.; Choung J.S.; et al. Glucagon-Like Peptide 1 Increases β-Cell Regeneration by Promoting αto β-Cell Transdifferentiation. Diabetes. 2018;67(12):2601–14. doi: 10.2337/db18-0155.
  17. Wideman R.D.; Kieffer T.J. Glucose-dependent insulinotropic polypeptide as a regulator of beta cell function and fate. Horm Metab Res. 2004;36(11–12):782–86. doi: 10.1055/s-2004-826164.
  18. Holst J.J.; Deacon C.F. Inhibition of the activity of dipeptidyl-peptidase IV as a treatment for type 2 diabetes. Diabetes. 1998;47:1663–70. doi: 10.2337/diabetes.47.11.1663.
  19. Deacon C.F. Physiology and pharmacology of DPP-4 in glucose homeostasis and the treatment of type 2 diabetes. Front Endocrinol. (Lausanne). 2019;10:80. doi: 10.3389/fendo.2019.00080.
  20. Pospisilik J.A.; Martin J.; Doty T.; et al. Dipeptidyl peptidase IV inhibitor treatment stimulates beta-cell survival and islet neogenesis in streptozotocin-induced diabetic rats. Diabetes. 2003;52(3):741–50. doi: 10.2337/diabetes.52.3.741.
  21. Sesti G.; Avogaro A.; Belcastro S.; et al. Ten years of experience with DPP-4 inhibitors for the treatment of type 2 diabetes mellitus. Acta Diabetol. 2019;56:605–17. Foi: 10.1007/s00592-018-1271-3.
  22. Trzaskalski N.A.; Fadzeyeva E.; Mulvihill E.E. Dipeptidyl Peptidase-4 at the Interface Between Inflammation and Metabolism. Clin Med Insights: Endocrinol Diab. 2020;13:1–10. doi: 10.1177/1179551420912972.
  23. Florentin M.; Kostapanos M.S.; Papazafiropoulou A.K. Role of dipeptidyl peptidase 4 inhibitors in the new era of antidiabetic treatment. W J Diab. 2022;15;13(2):85–96. doi: 10.4239/wjd.v13.i2.85.
  24. Davis T.M. Dipeptidyl peptidase-4 inhibitors: pharmacokinetics; efficacy; tolerability and safety in renal impairment. Diab Obes Metab. 2014;16(10):891–99. doi: 10.1111/dom.12295.
  25. Johns E.; McKay G.; Fisher M. Dipeptidyl peptidase-4 (DPP-4) inhibitors. Br J Cardiol. 2017;24:(1). doi: 10.5837/bjc.2017.001.
  26. Deacon C.F.; Lebovitz H.E. Comparative review of dipeptidyl peptidase-4 inhibitors and sulphonylureas. Diab Obes Metab. 2016;18(4):333–47. doi: 10.1111/dom.12610.
  27. Craddy P.; Palin H.J.; Johnson K.I. Comparative effectiveness of dipeptidylpeptidase-4 inhibitors in type 2 diabetes: a systematic review and mixed treatment comparison. Diab Ther. 2014;5(1):1–41. doi: 10.1007/s13300-014-0061-3.
  28. Maloney A.; Rosenstock J.; Fonseca V. A model-based meta-analysis of 24 antihyperglycemic drugs for type 2 diabetes: comparison of treatment effects at therapeutic doses. Clin Pharmacol Ther. 2019;105(5):1213–23. doi: 10.1002/cpt.1307.
  29. Куркин Д.В.; Бакулин Д.А.; Морковин Е.И. и др. Физиология; фармакология и перспективы применения ингибиторов дипептидилпептидазы-4. Фармация и фармакология. 2023;11(1):19–47. [Kurkin D.V.; Bakulin D.A.; Morkovin E.I. and others. Physiology; pharmacology and prospects for the use of dipeptidyl peptidase-4 inhibitors. Pharmacy and pharmacology. 2023;11(1):19–47. (In Russ.)]. doi: 10.19163/2307-9266-2023-11-1-19-47.
  30. Ceriello A.; Sportiello L.; Rafaniello C.; Rossi F. DPP-4 inhibitors: pharmacological differences and their clinical implications. Expert Opin Drug Saf. 2014;13(1):S57–68. doi: 10.1517/14740338.2014.944862.
  31. Tan X; Hu J. Evogliptin: a new dipeptidyl peptidase inhibitor for the treatment of type 2 diabetes. Expert Opin Pharmacother. 2016;17(9):1285–93. doi: 10.1080/14656566.2016.1183645.
  32. Gu N.; Park M.K.; Kim T.E.; et al. Multiple-dose pharmacokinetics and pharmacodynamics of evogliptin (DA-1229); a novel dipeptidyl peptidase IV inhibitor; in healthy volunteers. Drug Des Devel Ther. 2014;8:1709–21. doi: 10.2147/DDDT.S65678.
  33. Kim J.H. et al. Protective effects of evogliptin on steatohepatitis in high-fat-fed mice. Int J Mol Sci 2020 Sep 14;21(18):6743. doi: 10.3390/ijms21186743.
  34. Kim M.J.; Kim N.Y.; Jung Y.A.; et al. Evogliptin; a dipeptidyl peptidase-4 inhibitor; attenuates renal fibrosis caused by unilateral ureteral obstruction in mice. Diab Metab J. 2020;44:186–92. doi: 10.4093/dmj.2018.0271.
  35. Eun Lee J.; Kim J.E.; Lee M.H.; et al. DA-1229; a dipeptidyl peptidase IV inhibitor; protects against renal injury by preventing podocyte damage in an animal model of progressive renal injury. Lab Invest. 2016;96:547–60. doi: 10.1038/labinvest.2016.34.
  36. Hong S.M.; Park C.Y.; Hwang D.M.; et al. Efficacy and safety of adding evogliptin versus sitagliptin for metformin-treated patients with type 2 diabetes: a 24-week randomized; controlled trial with open label extension. Diab Obes Metab. 2017;19:654–63. doi: 10.1111/dom.12870.
  37. Tang Q.; Pan W.; Peng L. The efficacy and safety of evogliptin for type 2 diabetes mellitus: A systematic review and meta-analysis. Front Endocrinol. (Lausanne). 2022;19;13:962385. doi: 10.3389/fendo.2022.962385.
  38. Бабенко А.Ю.; Мосикян А.А.; Макаренко И.Е. и др. Анализ эффективности и безопасности эвоглиптина по сравнению с ситаглиптином при добавлении к монотерапии метформином в русско-корейской популяции. Результаты исследования ЭВОКОМБИ. Сахарный диабет. 2018;21(4):241–54. [Babenko A.Yu.; Mosiky-an A.A.; Makarenko I.E. et al. Analysis of the effectiveness and safety of evogliptin compared with sitagliptin when added to metformin monotherapy in the Russian-Korean population. Results of the EVOCOMBI study. Diabetes Mellitus. 2018;21(4):241–54. (In Russ.)]. doi: 10.14341/DM9586.
  39. Cercato C.; Felicio J.S.; Russo L.A.T.; et al. Efficacy and safety of evogliptin in the treatment of type 2 diabetes mellitus in a Brazilian population: A randomized bridging study. Diabetol Metab Syndr. 2019;11:107. doi: 10.1186/s13098-019-0505-z.
  40. Kim G.; Lim S.; Kwon H.-S.; et al. Efficacy and safety of evogliptin treatment in patients with type 2 diabetes: A multicentre; active-controlled; randomized; double-blind study with open-label extension (the EVERGREEN study). Diab Obes Metab. 2020;22(9):1527–36. doi: 10.1111/dom.14061.
  41. Moon J.S.; Park I.L.R.; Kim H.J.; Chung C.H. Efficacy and Safety of Evogliptin Add-on Therapy to Dapagliflozin/Metformin Combinations in Patients with Poorly Controlled Type 2 Diabetes Mellitus: A 24-Week Multicenter Randomized Placebo-Controlled Parallel-Design Phase-3 Trial with a 28-Week Extension. Diab Metab J. 2023;26. Doi: 10.4093/ dmj.2022.0387.
  42. Cahn A.; Cefalu W.T. Clinical considerations for use of initial combination therapy in type 2 diabetes. Diab Care. 2016;39(Suppl. 2):S137–45. doi: 10.2337/dcS15-3007.

补充文件

附件文件
动作
1. JATS XML
2. Fig.1.

下载 (218KB)
3. Fig.2.

下载 (313KB)
4. Fig.3.

下载 (64KB)

版权所有 © Bionika Media, 2023
##common.cookie##