Theory and practice of use of dipeptidyl peptidase-4 inhibitors: focus on evogliptin

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Treatment of type 2 diabetes mellitus (DM2) is an important task of modern medicine against the background of the inexorable spread of the disease. Recently; the possibilities of glucose-lowering pharmacotherapy have significantly expanded due to a deepening of understanding of the pathophysiological mechanisms of the disease. The importance of the incretin system in the regulation of carbohydrate metabolism; a target for incretin-directed therapy; is discussed. The class of dipeptidyl peptidase-4 inhibitors (DPP-4 inhibitors; gliptins) refers to drugs with incretin activity. The mechanisms of action of DPP-4 inhibitors are revealed; and the advantages of drugs in this group are emphasized. Several DPP-4 inhibitors are registered in the Russian Federation: alogliptin; vildagliptin; gemigliptin; gosogliptin; linagliptin; saxagliptin; sitagliptin; evogliptin. The article is devoted to the selection of the optimal drug from the DPP-4 group. The appearance on the market of a new Russian drug from this group of DPP-4 inhibitors; evogliptin; will make it possible to provide DM2 patients with modern; effective; affordable and high-quality treatment. The results of clinical studies of the effectiveness and safety of evogliptin are presented.

Full Text

Restricted Access

About the authors

Elena V. Biryukova

A.I. Yevdokimov Moscow State University of Medicine and Dentistry

Author for correspondence.
Email: lena@obsudim.ru
ORCID iD: 0000-0001-9007-4123

Dr. Sci. (Med.), Professor at the Department of Endocrinology and Diabetology; A.I. Yevdokimov

Russian Federation, Moscow

References

  1. Canto E.D.; Ceriello A.; Ryden; et al. Diabetes as a cardiovascular risk factor: An overview of global trends of macro and micro vascular complications Eur J Prev Cardiol. 2019;26(Suppl. 2):25–32. doi: 10.1177/2047487319878371.
  2. Портал IDF. Атлас диабета 9-е издание; 2019 [Электронный ресурс]; 4 февраля 2020. [IDF portal. Atlas of Diabetes 9th edition; 2019 [Electronic resource]; February 4; 2020. (In Russ.)]. URL: https://diabetesatlas.org/en/resources
  3. Harding J.L.; Pavkov M.E.; Magliano D.J.; et al. Global trends in diabetes complications: a review of current evidence Diabetologia. 2019;62:3–16. doi: 10.1007/s00125-018-4711-2.
  4. World Health Organization. Diabetes. [cited 25 April 2021]. In: World Health Organization [Internet]. Available from: https://www.who.int/news-room/fact-sheets/detail/diabetes
  5. Holman R.R.; Paul S.K.; Bethel M.A.; et al. 10-year follow-up of intensive glucose control in type 2 diabetes. N Engl J Med. 2008;359(15):1577–89. doi: 10.1056/nejmoa0806470.
  6. Gæde P.; Oellgaard J.; Carstensen B.; et al. Years of life gained by multifactorial intervention in patients with type 2 diabetes mellitus and microalbuminuria: 21 years follow-up on the Steno-2 randomised trial. Diabetol. 2016;59:2298. doi: 10.1007/s00125-016-4065-6.
  7. American Diabetes Association. Cardiovascular Disease and Risk Management: Standards of Medical Care in Diabetes; 2020. Diab Care. 2020;43(Suppl. 1):S111–34. doi: 10.2337/dc20-s010.
  8. Алгоритмы специализированной медицинской помощи больных сахарным диабетом. Под ред. И.И. Дедова; М.В. Шестаковой; А.Ю. Майорова. 10-й выпуск. М.; 2021. [Algorithms for specialized medical care for patients with diabetes. Ed. by I.I. Dedov; M.V. Shestakova; A.Yu. Mayorov. 10th issue. M.; 2021. (In Russ.)]. doi: 10.14341/DM221S1.
  9. ADA Professional Practice Committee. Pharmacologic Approaches to Glycemic Treatment: Standards of Medical Care in Diabetes-2022. Diab. Care. 2022;45(Suppl. 1):S125–43. doi: 10.2337/dc22-S009.
  10. Omar B.; Ahren B. Pleiotropic mechanisms for the glucose-lowering action of DPP-4 inhibitors. Diabetes. 2014;63(7):2196–202. doi: 10.2337/db14-0052.
  11. Carr R.D. Drug development from the bench to the pharmacy: with special reference to dipeptidyl peptidase-4 inhibitor development. Diab Med. 2016;33:718–22. doi: 10.1111/dme.13066.
  12. Baggio L.L.; Drucker D.J. Biology of incretins: GLP-1 and GIP. Gastroenterol. 2007;132(6):2131–57. doi: 10.1053/j.gastro.2007.03.054.
  13. Cantini G.; Mannucci E.; Luconi M. Perspectives in GLP-1 research: new targets; new receptors. Trends Endocrinol Metab. 2016;27(6):427–38. doi: 10.1016/j.tem.2016.03.017.
  14. Vilsboll T.; Holst J.J. Incretins; insulin secretion and Type 2 diabetes mellitus. Diabetol. 2004;47:357–66. doi: 10.1007/s00125-004-1342-6.
  15. Drucker D.J. Mechanisms of action and therapeutic application of glucagon-like peptide-1. Cell Metab. 2018;27:740–56. doi: 10.1016/j.cmet.2018.03.001.
  16. Lee Y.S.; Lee C.C.; Choung J.S.; et al. Glucagon-Like Peptide 1 Increases β-Cell Regeneration by Promoting αto β-Cell Transdifferentiation. Diabetes. 2018;67(12):2601–14. doi: 10.2337/db18-0155.
  17. Wideman R.D.; Kieffer T.J. Glucose-dependent insulinotropic polypeptide as a regulator of beta cell function and fate. Horm Metab Res. 2004;36(11–12):782–86. doi: 10.1055/s-2004-826164.
  18. Holst J.J.; Deacon C.F. Inhibition of the activity of dipeptidyl-peptidase IV as a treatment for type 2 diabetes. Diabetes. 1998;47:1663–70. doi: 10.2337/diabetes.47.11.1663.
  19. Deacon C.F. Physiology and pharmacology of DPP-4 in glucose homeostasis and the treatment of type 2 diabetes. Front Endocrinol. (Lausanne). 2019;10:80. doi: 10.3389/fendo.2019.00080.
  20. Pospisilik J.A.; Martin J.; Doty T.; et al. Dipeptidyl peptidase IV inhibitor treatment stimulates beta-cell survival and islet neogenesis in streptozotocin-induced diabetic rats. Diabetes. 2003;52(3):741–50. doi: 10.2337/diabetes.52.3.741.
  21. Sesti G.; Avogaro A.; Belcastro S.; et al. Ten years of experience with DPP-4 inhibitors for the treatment of type 2 diabetes mellitus. Acta Diabetol. 2019;56:605–17. Foi: 10.1007/s00592-018-1271-3.
  22. Trzaskalski N.A.; Fadzeyeva E.; Mulvihill E.E. Dipeptidyl Peptidase-4 at the Interface Between Inflammation and Metabolism. Clin Med Insights: Endocrinol Diab. 2020;13:1–10. doi: 10.1177/1179551420912972.
  23. Florentin M.; Kostapanos M.S.; Papazafiropoulou A.K. Role of dipeptidyl peptidase 4 inhibitors in the new era of antidiabetic treatment. W J Diab. 2022;15;13(2):85–96. doi: 10.4239/wjd.v13.i2.85.
  24. Davis T.M. Dipeptidyl peptidase-4 inhibitors: pharmacokinetics; efficacy; tolerability and safety in renal impairment. Diab Obes Metab. 2014;16(10):891–99. doi: 10.1111/dom.12295.
  25. Johns E.; McKay G.; Fisher M. Dipeptidyl peptidase-4 (DPP-4) inhibitors. Br J Cardiol. 2017;24:(1). doi: 10.5837/bjc.2017.001.
  26. Deacon C.F.; Lebovitz H.E. Comparative review of dipeptidyl peptidase-4 inhibitors and sulphonylureas. Diab Obes Metab. 2016;18(4):333–47. doi: 10.1111/dom.12610.
  27. Craddy P.; Palin H.J.; Johnson K.I. Comparative effectiveness of dipeptidylpeptidase-4 inhibitors in type 2 diabetes: a systematic review and mixed treatment comparison. Diab Ther. 2014;5(1):1–41. doi: 10.1007/s13300-014-0061-3.
  28. Maloney A.; Rosenstock J.; Fonseca V. A model-based meta-analysis of 24 antihyperglycemic drugs for type 2 diabetes: comparison of treatment effects at therapeutic doses. Clin Pharmacol Ther. 2019;105(5):1213–23. doi: 10.1002/cpt.1307.
  29. Куркин Д.В.; Бакулин Д.А.; Морковин Е.И. и др. Физиология; фармакология и перспективы применения ингибиторов дипептидилпептидазы-4. Фармация и фармакология. 2023;11(1):19–47. [Kurkin D.V.; Bakulin D.A.; Morkovin E.I. and others. Physiology; pharmacology and prospects for the use of dipeptidyl peptidase-4 inhibitors. Pharmacy and pharmacology. 2023;11(1):19–47. (In Russ.)]. doi: 10.19163/2307-9266-2023-11-1-19-47.
  30. Ceriello A.; Sportiello L.; Rafaniello C.; Rossi F. DPP-4 inhibitors: pharmacological differences and their clinical implications. Expert Opin Drug Saf. 2014;13(1):S57–68. doi: 10.1517/14740338.2014.944862.
  31. Tan X; Hu J. Evogliptin: a new dipeptidyl peptidase inhibitor for the treatment of type 2 diabetes. Expert Opin Pharmacother. 2016;17(9):1285–93. doi: 10.1080/14656566.2016.1183645.
  32. Gu N.; Park M.K.; Kim T.E.; et al. Multiple-dose pharmacokinetics and pharmacodynamics of evogliptin (DA-1229); a novel dipeptidyl peptidase IV inhibitor; in healthy volunteers. Drug Des Devel Ther. 2014;8:1709–21. doi: 10.2147/DDDT.S65678.
  33. Kim J.H. et al. Protective effects of evogliptin on steatohepatitis in high-fat-fed mice. Int J Mol Sci 2020 Sep 14;21(18):6743. doi: 10.3390/ijms21186743.
  34. Kim M.J.; Kim N.Y.; Jung Y.A.; et al. Evogliptin; a dipeptidyl peptidase-4 inhibitor; attenuates renal fibrosis caused by unilateral ureteral obstruction in mice. Diab Metab J. 2020;44:186–92. doi: 10.4093/dmj.2018.0271.
  35. Eun Lee J.; Kim J.E.; Lee M.H.; et al. DA-1229; a dipeptidyl peptidase IV inhibitor; protects against renal injury by preventing podocyte damage in an animal model of progressive renal injury. Lab Invest. 2016;96:547–60. doi: 10.1038/labinvest.2016.34.
  36. Hong S.M.; Park C.Y.; Hwang D.M.; et al. Efficacy and safety of adding evogliptin versus sitagliptin for metformin-treated patients with type 2 diabetes: a 24-week randomized; controlled trial with open label extension. Diab Obes Metab. 2017;19:654–63. doi: 10.1111/dom.12870.
  37. Tang Q.; Pan W.; Peng L. The efficacy and safety of evogliptin for type 2 diabetes mellitus: A systematic review and meta-analysis. Front Endocrinol. (Lausanne). 2022;19;13:962385. doi: 10.3389/fendo.2022.962385.
  38. Бабенко А.Ю.; Мосикян А.А.; Макаренко И.Е. и др. Анализ эффективности и безопасности эвоглиптина по сравнению с ситаглиптином при добавлении к монотерапии метформином в русско-корейской популяции. Результаты исследования ЭВОКОМБИ. Сахарный диабет. 2018;21(4):241–54. [Babenko A.Yu.; Mosiky-an A.A.; Makarenko I.E. et al. Analysis of the effectiveness and safety of evogliptin compared with sitagliptin when added to metformin monotherapy in the Russian-Korean population. Results of the EVOCOMBI study. Diabetes Mellitus. 2018;21(4):241–54. (In Russ.)]. doi: 10.14341/DM9586.
  39. Cercato C.; Felicio J.S.; Russo L.A.T.; et al. Efficacy and safety of evogliptin in the treatment of type 2 diabetes mellitus in a Brazilian population: A randomized bridging study. Diabetol Metab Syndr. 2019;11:107. doi: 10.1186/s13098-019-0505-z.
  40. Kim G.; Lim S.; Kwon H.-S.; et al. Efficacy and safety of evogliptin treatment in patients with type 2 diabetes: A multicentre; active-controlled; randomized; double-blind study with open-label extension (the EVERGREEN study). Diab Obes Metab. 2020;22(9):1527–36. doi: 10.1111/dom.14061.
  41. Moon J.S.; Park I.L.R.; Kim H.J.; Chung C.H. Efficacy and Safety of Evogliptin Add-on Therapy to Dapagliflozin/Metformin Combinations in Patients with Poorly Controlled Type 2 Diabetes Mellitus: A 24-Week Multicenter Randomized Placebo-Controlled Parallel-Design Phase-3 Trial with a 28-Week Extension. Diab Metab J. 2023;26. Doi: 10.4093/ dmj.2022.0387.
  42. Cahn A.; Cefalu W.T. Clinical considerations for use of initial combination therapy in type 2 diabetes. Diab Care. 2016;39(Suppl. 2):S137–45. doi: 10.2337/dcS15-3007.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig.1.

Download (218KB)
3. Fig.2.

Download (313KB)
4. Fig.3.

Download (64KB)

Copyright (c) 2023 Bionika Media

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies