Matrix metalloproteinases in priogression of hereditary kidney disease


Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Рұқсат ақылы немесе тек жазылушылар үшін

Аннотация

Role of matrix metalloproteinases (MMP) in pathogenesis of hereditary kidney disease (Alport’s syndrome, cystic kidney diseases) is reviewed.

Толық мәтін

Рұқсат жабық

Авторлар туралы

Z. Bashirova

Email: Z-Bash@mail.ru

Әдебиет тізімі

  1. Клишо Е.В., Кондакова И.В., Чойнзонов Е.Л. и др. Прогностическая значимость протеаз у больных плоскоклеточными карциномами головы и шеи. Бюллетень СО РАМН. 2005; 2 (116): 82—91.
  2. Nagase H., Woessner J.F. Matrix metalloproteinases. J Biol Chem 1999; 274 31: 21 491-21 494.
  3. Соловьева Н.И. Матриксные металлопротеиназы и их биологические функции. Журн. биоорган. химии 1998; 24: 217-226.
  4. Catania J.M., Chen G., Parrish A.R. Role of matrix metalloproteinases in renal pathophysiologies. Am J Physiol Renal Physiol 2007; 292: 905-911.
  5. Eddy A.A. Plasminogen activator inhibitor-1 and the kidney. Am J Physiol Renal Physiol. 2002 Aug; 283(2): F209-200.
  6. Visse R. Matrix metalloproteinases and tissue inhibitors of metalloproteinases: structure, function, and biochemistry. Circulation Res 2003; 2: 827-839.
  7. Бобкова И.Н., Козловская Л.В., Ли О.А. Роль матриксных металлопротеиназ в патогенезе заболеваний почек. Тер арх. 2008; 6: 86-90.
  8. Sternlicht M.D. How matrix metalloproteinases regulate cell behavior. Annu. Rev. Cell. Dev. Biol 2001; 17: 463-516.
  9. Mohammed F.F. Metalloproteinases, inflammation, and rheumatoid arthritis. Rheum 2003; 62: 1143-1147.
  10. Dreier R. Paracrine interactions of chondrocytes and macrophages in cartilage degradation: articular chondrocytes provide factors that activate macrophage-derived pro-gelatinase B (pro-MMP-9). Cell Science 2001; 114: 3813-3822.
  11. Sawicki G. Interaction of keratinocytes and fibroblasts modulates the expression of matrix metalloproteinases-2 and -9 and their inhibitors. Mol. Cell. Biochem 2005; 269: 209-216.
  12. Douthwaite J.A., Jonson T.S. Effects of transforming growth factor-β1 on renal extracellular matrix components and their regulating proteins. J Am Soc Nephrol 1999; 10: 2109-2119.
  13. Gong R., Rifair A., Tolbert E.M. et al. Hepatocyte growth factor modulates matrix metalloproteinases and plasminogen activator/plasmin proteolytic pathways in progressive renal interstitial fibrosis. J Am Soc Nephrol 2003; 14: 3047-3060.
  14. MacNaul K.L. Discoordinate Expression of Stromelysin, Collagenase and Tissue Inhibitor of Metalloproteinases-1 in Rheumatoid Human Synovial Fibroblasts. Synergistic Effects of Interleukin-1 and Tumor Necrosis Factor-cx on Stromelysin Expression. Biol. Chem 1990; 265: 17238-17245.
  15. Ohtomo S., Nangaku M., Izuhara Y. et al. The role of megsin, a serine protease inhibitor, in diabetic mesangial matrix accumulation. Kidney Int 2008; 74: 768-774.
  16. Curry T.E., Osteen K.G. The matrix metalloproteinase system: changes, regulation, and impact throughout the ovarian and uterine reproductive cycle. Endocrinol. Rev. - 2003; 24: 428-465.
  17. Murphy G., Segain J.P. et al. The 28-kDa N-terminal domain of mouse stromelysin-3 has the general properties of a weak metalloproteinase. J.Biol. Chem 1993; 268: 15435-15441.
  18. Aimes R.T., Quigley J.P. Matrix metalloproteinase-2 is an interstitial collagenase. Inhibitor-free enzyme catalyzes the cleavage of collagen fibrils and soluble native type I collagen generating the specific 3/4- and 1/4-length fragments. J.Biol.Chem.1995; 270: 5872-5876.
  19. Shapiro S.D., Griffin G.L., Gilbert D.J. et al. Molecular cloning, chromosomal localization, and bacterial expression of a murine macrophage metalloelastase. J Biol. Chem.1992; 267: 4664-4671.
  20. Lenz O., Elliot S.J., Stetler-Stevenson W.G. Matrix metalloproteinases in renal development and disease. J Am Soc Nephrol 2000;11: 574-581.
  21. Keeling J., Herrera G.A. Human matrix metalloproteinases: characteristics and pathologic role in altering mesangial homeostasis. Microsoc Res Tech 2008; 71: 371-379.
  22. Thrailkill K.M., Clay Bunn R., Fowlkes J.L. Matrix metalloproteinases: their potential role in the pathogenesis of diabetic nephropathy. Endocrine 2009; 35: 1-10.
  23. Andrews K.L., Betsuyaku T., Rogers S. et al. Gelatinase B (MMP-9) is not essential in the normal kidney and does not influence progression of renal disease in a mouse model of Alport syndrome. Am J Pathol 2000; 157: 303-311.
  24. Rao V.N., Lees G.E., Kashtan C.E. et al. Increased expression of MMP- 2,MMP-9(type IV collagenas/gelatinases), and MT-1 MMP in canine X-linked Alport syndrome (XLAS). Kidney Int 2003; 63: 1736-1748.
  25. Rao V.H., Lees G. E., Kashtan C.E. et al. Dysregulation of renal MMP-3 and MMP-7 in canine X-linked Alport syndrome. Pediatr Nephrol. 2005 Jun; 20(6): 732-739.
  26. Zeisberg М., Khurana М., Velidi H. Rao et al. Stage-Specific Action of Matrix Metalloproteinases Influences Progressive Hereditary Kidney Disease. PLoS Med 2006; 4: 535-546.
  27. Cosgrove D., Meehan D.T., Delimont D. Integrin alpha1 beta1 regulates matrix metalloproteinases via P38 mitogen-activated protein kinase in mesangial cells: implications for Alport syndrome. Am J Pathol 2008; 172: 761-773.
  28. Rao V.N., Meehan D.T., Delimont D. et al. Role for macrophage metalloelastase in glomerular basement membrane damage associated with alport syndrome. Am J Pathol 2006; 169: 26-29.
  29. Meehan D.T., Delimont D., Cheung L. et al. Biomechanical strain causes maladaptive gene regulation, contributing to Alport glomerular disease. Kidney Int 2009; 76: 968-976.
  30. Candiano G., Gusmano R., Altieri P. et al. Extracellular matrix formation by epithelial cells from human polycystic kidney cysts in culture. Cell Pathol 1992; 63: 1-9.
  31. Rankin C.A., Suzuki K., Itoh Y. et al. Matrix metalloproteinases and TIMPS in cultured C57BL/6J-cpk kidney tubules. Kidney int. 1996; 50: 835-844.
  32. Rankin C.A, Itoh Y., Tian C. et al. Matrix Metalloproteinase-2 in a Murine Model of infantile-type polycystic kidney disease. J.Am Soc Nephrol 1999; 10: 210-217.
  33. Schaefer L., Han X., Gretz N. et al. Schaefer RM. Tubular gelatinase A (MMP-2) and its tissue inhibitors in polycystic kidney disease in the Han: SPRD rat. Kidney Int. 1996; 49: 75-81.
  34. Takagi H., Umemoto T. Matrix metalloproteinases synthesized in autosomal dominant kidney disease play a role in development of a concurrent abdominal aortic aneurism. Med Hypotheses 2005; 64: 778-781.
  35. Harada H., Furuya M., Ishikura H. et al. Expression of matrix metalloproteinases in the fluids of renal cystic lesions. J Urol 2002; 168: 19-22.
  36. Nakamura T., Ushiyama C., Suzuki S., et al. Elevation of serum levels of metalloproteinase-1, tissue inhibitor of metalloproteinase-1 and type IV collagen, and plasma levels of metalloproteinase-9 in polycystic kidney disease. Am J Nephrol 2000; 23.
  37. Liu B., Li C., Liu Z. et al. Increasing extracellular matrix collagen level and MMP activity induces cyst development in polycystic kidney disease. BMC Nephrol 2012; 11: 109.doi: 10.1186/1471-2369-13-109.
  38. Osten L., Kubitsa M., Gallagher A.R. Doxycycline accelerates renal cyst growth and fibrosis in the pcy/pcy mouse model of type 3 nephronophthisis, a form of recessive polycystic kidney disease. Histochem Cell Biol 2009; 132: 199-210.
  39. Berthier C.C., Wahl P.R., Le Hir M. et al. Sirolimus ameliorates the enhanced expression of metalloproteinases in a rat model of autosomal dominant polycystic kidney disease. Nephrol Dial Transplant 2008; 23: 880-889.
  40. Obermüller N., Morente N., Kränzlin B. et al. A possible role for metalloproteinases in renal cyst development. Am J Physiol Renal Physiol 2001; 280: 540-550.

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

Осы сайт cookie-файлдарды пайдаланады

Біздің сайтты пайдалануды жалғастыра отырып, сіз сайттың дұрыс жұмыс істеуін қамтамасыз ететін cookie файлдарын өңдеуге келісім бересіз.< / br>< / br>cookie файлдары туралы< / a>