Platelet-leukocyte aggregates in the circulating blood as an early indicator of recurrence of chronic obstructive pyelonephritis


Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Acesso é pago ou somente para assinantes

Resumo

Aim. To evaluate the platelet (Pl) reactivity to the platelet-activating factor (PAF), as well as their ability to form platelet-leukocyte aggregates (PLA) against the background of use of non-steroidal anti-inflammatory drugs and antibiotics in patients with chronic obstructive pyelonephritis (COPN). Materials and Methods. The study included 43 patients, of which 26 - with COPN in the remission phase and 17 patients COPN in the attack phase. Platelets were isolated by centrifugation from citrated peripheral blood. The Pl aggregation was evaluated on ChronoLog aggregator (USA) using stimulation with PAF at EC50 concentration. The number of PLA was assessed after blood smear staining by Romanowsky-Giemsa method. Results. In the attack phase of COPN, a high residual PL reactivity to PAF was revealed. At the same time, in the phase of recurrence of the disease PL form more PLA, with predominant concentration of neutrophils and monocytes. For the remission phase of COPN, the variability of the PL reactivity to PAF is typical, which reflects the features of the realization of a chronic inflammatory reaction. In 10 (38.5%) patients with COPN in the remission phase with a higher residual Pl reactivity, the stimulating effect of PAF was manifested by an increase in the number of platelet-neutrophilic and platelet-monocyte aggregates, whereas in 16 (6і.5%) patients with low residual reactivity - by an increase in the number of platelet-lymphocytic aggregates. Conclusions. The increase in the number of aggregates that provide the recruitment of neutrophils and monocytes to the focus of inflammation during remission of COPN can be a predictor of the transition of chronic inflammation to the acute phase.

Texto integral

Acesso é fechado

Sobre autores

E. Barinov

Donetsk National Medical University named after m. Gorky

Email: barinov.ef@gmail.com
Doctor of Medical Sciences, Professor, Head of the Department of Histology, Cytology and Embryology

Kh. Grigoryan

Donetsk Regional Clinical Territorial Medical Association

Urologist

A. Balykina

Donetsk National Medical University named after m. Gorky

Teaching Assistant at the Department of Histology, Cytology and Embryology

T. Faber

Donetsk National Medical University named after m. Gorky

Teaching Assistant at the Department of Histology, Cytology and Embryology

Bibliografia

  1. Hamasuna R., Takahashi S., Nagae H. Kubo T., Yamamoto S., Arakawa S., Matsumoto T.Obstructive pyelonephritis as a result of urolithiasis in Japan: diagnosis, treatment and prognosis. Int. J. Urol. 2015; 22(3): 294-300. doi: 10.1111/iju.12666.
  2. Gkaliagkousi E., Gavriilaki E., Yiannaki E. Markala D., Papadopoulos N., Triantafyllou A., Anyfanti P., Petidis K., Garypidou V., Doumas M., Ferro A., Douma S. Platelet activation in essential hypertension during exercise: pre-and post-treatment changes with an angiotensin II receptor blocker. Am. J. Hypertens. 2014; 27(4): 571-578. doi: 10.1093/ajh/hpt153.
  3. Li J., Kim K., Hahm E., R.Molokie R., Hay N., Gordeuk V.R., Du X., Cho J.Neutrophil AKT2 regulates heterotypic cell-cell interactions during vascular inflammation.J.Clin. Invest. 2014: 124(4): 1483-1496. doi: 10.1172/JCI72305.
  4. Greco E., Lupia E., Bosco O.Vizio B., Montrucchio G.Platelets and multiorgan failure in sepsis. Int. J. Mol. Sci. 2017; 18(10).pii: E2200. Doi: 10.3390/ ijms18102200.
  5. Welch E.J., Naikawadi R.P., Li Z., Lin P., Ishii S., Shimizu T., Tiruppathi C., Du X., Subbaiah PV, Ye RD. Opposing effects of platelet-activating factor and lyso-platelet-activating factor on neutrophil and platelet activation. Mol. Pharmacol. 2009; 75(1): 227-234. doi: 10.1124/mol.108.051003.
  6. Gill P., Jindal N.L., Jagdis A., Vadas P.Platelets in the immune response: Revisiting platelet-activating factor in anaphylaxis. J. Allergy Clin.Immunol. 2015; 135(6): 1424-1432. doi: 10.1016/j.jaci.2015.04.019.
  7. Dopheide J.F., Rubrech J., Trumpp A. Geissler P., Zeller G.C., Bock K., Dünschede F., Trinh T.T., Dorweiler B., Münzel T., Radsak M.P., Espinola-Klein C. Leukocyte-platelet aggregates-a phenotypic characterization of different stages of peripheral arterial disease. Platelets. 2016; 27(7): 658- 667. doi: 10.3109/09537104.2016.1153619.
  8. Lecut C., Faccinetto C., Delierneux C. vanOerle R., Spronk H.M., Evans R.J., El Benna J., Bours V., Oury C. ATP-gated P2X1 ion channels protect against endotoxemia by dampening neutrophil activation.J.Thromb. Haemost.2012; 10(3): 453-465.doi: 10.1111/j.1538-7836.2011.04606.x.
  9. Nel J.G., Durandt C., Theron A.J. Tintinger G.R., Pool R., Richards G.A., Mitchell T.J., Feldman C., Anderson R. Pneumolysin mediates heterotypic aggregation of neutrophils andplatelets in vitro. J. Infect. 2017; 74(6): 599-608. doi: 10.1016/j.jinf.2017.02.010.
  10. Greco N.J., Arnold J.H., O’Dorisio T.M., Cataland S., Panganamala R.V. Action of platelet-activating factor on type 1 diabetic human platelets. J. Lab. Clin. Med. 1985; 105(4): 410-416. PMID: 3981054/
  11. Watala C. Blood platelet reactivity and its pharmacological modulation in (people with) diabetes mellitus. Curr. Pharm. Des. 2005; 11(18): 2331-2365. PMID: 16022671.
  12. Zarbock A., Polanowska-Grabowska R.K., Ley K. Platelet-neutrophil-interactions: linking hemostasis and inflammation/Blood Rev. 2007; 21(2): 99- 111. doi: 10.1016/j.blre.2006.06.001.
  13. Lam F.W., Burns A.R., Smith C.W., Rumbaut R.E. Platelets enhance neutrophil transendothelial migration via P-selectin glycoprotein ligand-1 Am. J. Physiol.Heart Circ. Physiol. 2011; 300(2): 468-475. Doi: 10.1152/ ajpheart.00491.2010.
  14. Peters M.J., Dixon G., Kotowicz K.T. Hatch D.J., Heyderman R.S., Klein N.J. Circulating platelet-neutrophil complexes represent a subpopulation of activated neutrophils primed for adhesion, phagocytosis and intracellular killing. Br. J.Haematol. 1999; 106(2): 391-399.
  15. Nagasawa A., Matsuno K, Tamura S.Hayasaka K., Shimizu C., Moriyama T. The basis examination of leukocyte-platelet aggregates with CD45 gating as a novel platelet activation marker.Int. J. Lab.Hematol. 2013: 35(5): 534-541. doi: 10.1111/iflh.12051.
  16. Aurigemma C., Scalone G., Tomai F., Altamura L., De Persio G., Stazi A., Lanza G.A., Crea F.Persistent enhanced platelet activation in patients with acute myocardial infarction and coronary microvascular obstruction: clinical implications. ThrombHaemost. 2014; 111(1): 122-130. doi: 10.1160/TH13-02-0166.
  17. Barnard M.R., Linden M.D., Frelinger A., Li Y., Fox M.L., Furman M.I., Michelson A.D. Effects of platelet binding on whole blood flow cytometry assays of monocyte and neutrophil procoagulant activity. J.Thromb. Haemost.2005; 3(11): 2563- 2570. doi: 10.1111/j.1538-7836. 2005.01603.x.
  18. Passacquale G., Vamadevan P., Pereira L., Hamid C., Corrigall V., Ferro A. Monocyte-platelet interaction induces a pro-inflammatory phenotype in circulating monocytes. PLoS One. 2011; 6(10): e25595. doi: 10.1016/j.msard.2012.01.001.
  19. Trzeciak-Ryczek A., Tokarz-Deptula B., Deptula W. Plateletsan important element of the immune system. Pol. J. Vet. Sci. 2013; 16(2): 407-413. PMID: 23971215.
  20. Thomas M.R., Storey R.F. The role of platelets in inflammation. ThrombHaemost. 2015; 114(3): 449-458. doi: 10.1160/TH14-12-1067.
  21. Starossom S.C., Veremeyko T., Yung A.W., Dukhinova M., Au C., Lau A.Y., Weiner H.L., Ponomarev E.D. Platelets play differential role during the initiation and progression of autoimmune neuroinflammation.Circ. Res. 2015; 117(9): 779-792. doi: 10.1161/CIRCRESAHA.115.306847.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Este site utiliza cookies

Ao continuar usando nosso site, você concorda com o procedimento de cookies que mantêm o site funcionando normalmente.

Informação sobre cookies