Mechanisms of albumin loss against the background of the use of modern methods of renal replacement therapy

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Acesso é pago ou somente para assinantes

Resumo

The article deals with the issues of renal replacement therapy (RRT) taking into account the latest knowledge in the field of physics and chemistry of polymeric dialysis membranes. Existing and historical information about the classification of membranes for hemodialysis is given. The review also discusses the classification of dialysis membranes, based on the appropriateness of their use for a particular clinical situation, in order to achieve more effective hemodialysis and its modifications, as well as increase the safety of the procedure and reduce episodes of bioincompatibility reactions. The effect of albumin loss during the use of various methods of extracorporeal apparatus detoxification and peritoneal dialysis on the quality of life and survival of patients with end-stage renal disease was evaluated. The mechanisms of protein loss during RRT by adsorption on the hemodialyzer membrane, convective transfer, and elimination into the dialysate are described. In addition, the possibilities of analyzing adsorbed protein fractions under various pathological conditions are presented. The issues of the potentiating effect of hypoalbuminemia as an independent risk factor for adverse outcomes in patients receiving RRT are discussed. Determination of the albumin level and its loss during the procedures for replacing the lost kidney function seems to be a routine method that allows indirect control of basal and energy metabolism, determining the prognosis of treatment with extracorporeal detoxification methods.

Texto integral

Acesso é fechado

Sobre autores

Aleksandr Litvinov

OOO Baltic Medical Company LLC; Metaco LLP

Autor responsável pela correspondência
Email: dirge@yandex.ru
ORCID ID: 0000-0001-5251-145X

Cand. Sci. (Med.), Leading Researcher; Chief Physician of OOO «Baltic Medical Company»

Rússia, Vladikavkaz; London, UK

Mitkhat Gasanov

Rostov State Medical University

Email: mitkhat@mail.ru
ORCID ID: 0000-0001-5856-0404

Cand. Sci. (Med.), Associate Professor, Rostov State Medical University, Department of Internal Medicine No. 1

Rússia, Rostov-on-Don

Yuliya Kuznetsova

Rostov State Medical University

Email: ul.kuznetsova04@mail.ru
ORCID ID: 0000-0002-5740-3009

Student at the Rostov State Medical University

Rússia, Rostov-on-Don

Said Gergia

OOO DC Nephros-Don

Email: boss.gergiya@mail.ru
ORCID ID: 0009-0004-3799-0674

Nephrologist at OOO DC Nephros-Don

Rússia, Rostov-on-Don

Sergey Shevchenko

Rostov State Medical University

Email: shevchenko19967@mail.ru
ORCID ID: 0000-0002-0151-0761

General Practitioner, Rostov State Medical University

Rússia, Rostov-on-Don

Bibliografia

  1. Румянцева Е.И. Хроническая болезнь почек как глобальная проблема для общественного здоровья: динамика заболеваемости и смертности. Проблемы стандартизации в здравоохранении. 2021;1–2:41–9. doi: 10.26347/1607-2502202101-02041-049. [Rumyantseva E.I. Chronic kidney disease as a global problem for public health: dynamics of morbidity and mortality. Problems of standardization in healthcare. 2021;1–2:41–9. doi: 10.26347/1607-2502202101-02041-049 (In Russ.)].
  2. Клинические рекомендации. Хроническая болезнь почек (ХБП). Нефрология. 2021;5:10–84. doi: 10.36485/1561-6274-2021-25-5-10-84. [Clinical recommendations. Chronic kidney disease (CKD). Nephrology. 2021;5:10–84. doi: 10.36485/1561-6274-2021-25-5-10-84 (In Russ.)].
  3. Liyanage T., Ninomiya T., Jha V. Worldwide access to treatment for end-stage kidney disease: a systematic review. Lancet. 2015;385:1975–82. doi: 10.1016/S0140-6736(14)61601-9.
  4. Imbeault B., Nadeau-Fredette A.C. Optimization of Dialysis Modality Transitions for Improved Patient Care. Can. J. Kidney Health Dis. 2019;6:2054358119882664. doi: 10.1177/2054358119882664.
  5. Marshall M.R., Polkinghorne K.R., Kerr P.G., et al. Temporal Changes in Mortality Risk by Dialysis Modality in the Australian and New Zealand Dialysis Population. Am. J. Kidney Dis. 2015;66(3):489–98. doi: 10.1053/j.ajkd.2015.03.014.
  6. Wakasugi M., Kazama J.J., Narita I. Mortality trends among Japanese dialysis patients, 1988–2013: a joinpoint regression analysis. Nephrol. Dial. Transplant. 2016;31(9):1501–507. doi: 10.1093/ndt/gfw249.
  7. Kalantar-Zadeh K., Abbott K.C., Kronenberg F., et al. Epidemiology of dialysis patients and heart failure patients. Semin. Nephrol. 2006;26(2):118–33. doi: 10.1016/j.semnephrol.2005.09.005.
  8. Bradbury B.D., Fissell R.B., Albert J.M., et al. Predictors of early mortality among incident US hemodialysis patients in the Dialysis Outcomes and Practice Patterns Study (DOPPS). Clin. J. Am. Soc. Nephrol. 2007;2(1):89–99. doi: 10.2215/CJN.01170905.
  9. Jansz T.T., Noordzij M., Kramer A., et al. Survival of patients treated with extended-hours haemodialysis in Europe: an analysis of the ERA-EDTA Registry. Nephrol. Dial. Transplant. 2020;35(3):488–95. doi: 10.1093/ndt/gfz208.
  10. Sharma A.P., Gupta A., Sharma R.K., et al. Does serum albumin at start of continuous ambulatory peritoneal dialysis (CAPD) or its drop during CAPD determine patient outcome? Adv. Perit. Dial. 2000;16:119–22.
  11. Iseki K., Kawazoe N., Fukiyama K. Serum albumin is a strong predictor of death in chronic dialysis patients. Kidney Int. 1993;44(1):115–19. doi: 10.1038/ki.1993.220.
  12. Avram M.M., Fein P.A., Bonomini L., et al. Predictors of survival in continuous ambulatory peritoneal dialysis patients: a five-year prospective study. Perit. Dial. Int. 1996;16(Suppl. 1):S190–94.
  13. Jones C.H., Newstead C.G., Wills E.J., Davison A.M. Serum albumin and survival in CAPD patients: the implications of concentration trends over time. Nephrol. Dial. Transplant. 1997;12(3):554–58. doi: 10.1093/ndt/12.3.554.
  14. Lo W.K., Tong K.L., Li C.S., et al. Relationship between adequacy of dialysis and nutritional status, and their impact on patient survival on CAPD in Hong Kong. Perit. Dial. Int. 2001;21(5):441–47. doi: 10.1177/089686080102100504.
  15. Kalantar-Zadeh K., Kilpatrick R.D., Kuwae N., et al. Revisiting mortality predictability of serum albumin in the dialysis population: time dependency, longitudinal changes and population-attributable fraction. Nephrol. Dial. Transplant. 2005;20(9):1880–88. doi: 10.1093/ndt/gfh941.
  16. Chen J.B., Cheng B.C., Yang C.H., Hua M.S. An association between time-varying serum albumin level and the mortality rate in maintenance haemodialysis patients: a five-year clinical cohort study. BMC. Nephrol. 2016;17:117. doi: 10.1186/s12882-016-0332-5.
  17. Hao N., Cheng B.C., Yang H.T., et al. Time-varying serum albumin levels and all-cause mortality in prevalent peritoneal dialysis patients: a 5-year observational study. BMC. Nephrol. 2019;20(1):254. Doi: 10.1186/ s12882-019-1433-8.
  18. Owen W.F., Lew N.L., Liu Y., et al. The urea reduction ratio and serum albumin concentration as predictors of mortality in patients undergoing hemodialysis. N. Engl. J. Med. 1993;329:1001–6. doi: 10.1056/NEJM199309303291404.
  19. Churchill D.N., Taylor D.W., Cook R.J., et al. Canadian hemodialysis morbidity study. Am. J. Kidney Dis. 1992;19:214–34. Doi: 10.1016/ S0272-6386(13)80002-9.
  20. Kaysen G.A., Stevenson F.T., Depner T.A. Determinants of albumin concentration in hemodialysis patients. Am. J. Kidney Dis. 1997;29:658–68. doi: 10.1016/S0272-6386(97)90117-7.
  21. Chan M., Kelly J. Batterham M., Tapsell L. Malnutrition (subjective global assessment) scores and serum albumin levels, but not body mass index values, at initiation of dialysis are independent predictors of mortality: a 10-year clinical cohort study. J. Ren. Nutr. 2012;22:547–57. doi: 10.1053/j.jrn.2011.11.002.
  22. Steiber A.L. Clinical indicators associated with poor oral intake of patients with chronic renal failure. J. Ren. Nutr 1999;9:84–8. Doi: 10.1016/ S1051-2276(99)90005-5.
  23. Kopple J.D. Nutritional status as a predictor of morbidity and mortality in maintenance dialysis patients. ASAIO J. 1997;43(3):246–50. doi: 10.1097/00002480-199743030-00026.
  24. Jung H.Y., Kim S.H., Jang H.M., et al. Individualized prediction of mortality using multiple inflammatory markers in patients on dialysis. PLoS One. 2018;13(3):e0193511. doi: 10.1371/journal.pone.0193511.
  25. Chan H.W., Clayton P.A., McDonald S.P., et al. Risk factors for dialysis withdrawal: an analysis of Australia and New Zealand Dialysis and transplant (ANZADATA) registry, 1999-2008. Clin. J. Am. Soc. Nephrol. 2012;7(5): 775–81. doi: 10.2215/CJN.07420711.
  26. Mizuno M., Ito Y., Tanaka A., et al. Peritonitis is still an important factor for withdrawal from peritoneal dialysis therapy in the Tokai area of Japan. Clin. Exp. Nephrol. 2011;15(5):727–37. doi: 10.1007/s10157-011-0471-8.
  27. Birmele B., Francois M., Pengloan J., et al. Death after withdrawal from dialysis: the most common cause of death in a French dialysis population. Nephrol. Dial. Transplant. 2004;19(3):686–91. doi: 10.1093/ndt/gfg606.
  28. Chan C., Noble H., Lo S., et al. Palliative care for patients with end-stage renal disease: experiences from Hong Kong. Int. J. Palliat. Nurs. 2007;13(7): 310–14. doi: 10.12968/ijpn.2007.13.7.24342.
  29. McDade-Montez E.A., Christensen A.J., Cvengros J.A., Lawton W.J. The role of depression symptoms in dialysis withdrawal. Health Psychol. 2006;25(2):198–204. doi: 10.1037/0278-6133.25.2.198.
  30. Remón-Rodríguez C., Quirós-Ganga P., Portolés-Pérez J, et al. Results of the cooperative study of Spanish peritoneal dialysis registries: analysis of 12 years of follow-up. Nefrol. 2014;34(1):18–33. doi: 10.3265/Nefrologia.pre2013.Jul.12106.
  31. Workeneh B., Guffey D., Minard C.G., Mitch W.E. Causes for withdrawal in an urban peritoneal. Int. J. Nephrol. 2015;2015:652953. doi: 10.1155/2015/652953.
  32. Heaf J.G., Sarac S., Afzal S. A high peritoneal large pore fluid flux causes hypoalbuminaemia and is a risk factor for death in peritoneal dialysis patients. Nephrol. Dial. Transplant. 2005;20:2194–201. doi: 10.1093/ndt/gfi008.
  33. Nakamoto H., Imai H., Kawanishi H., et al. Effect of diabetes on peritoneal function assessed by personal dialysis capacity test in patients undergoing CAPD. Am. J. Kidney Dis. 2002;40:1045–54. doi: 10.1053/ajkd.2002.36343.
  34. Szeto C.C., Chow K.M., Lam C.W., et al. Peritoneal albumin excretion is a strong predictor of cardiovascular events in peritoneal dialysis patients: a prospective cohort study. Perit. Dial. Int. 2005;25:445–52.
  35. Qazi H.A., Chen H., Zhu M. Factors influencing dialysis withdrawal: a scoping review. BMC. Nephrol. 2018;19(1):96. doi: 10.1186/s12882-018-0894-5.
  36. Watanabe Y., Kawanishi H., Suzuki K., et al. Japanese society for dialysis therapy clinical guideline for "Maintenance hemodialysis: hemodialysis prescriptions". Ther. Apher. Dial. 2015;19(Suppl. 1):67–92. doi: 10.1111/1744-9987.12294.
  37. Saito A. Definition of high-performance membranes - from the clinical point of view. Contrib. Nephrol. 2011;173:1–10. doi: 10.1159/000328938.
  38. Yamashita A.C. Mass transfer mechanisms in high-performance membrane dialyzers. Contrib. Nephrol. 2011;173:95–102. doi: 10.1159/000328946.
  39. National Kidney Foundation: Clinical practice guidelines for hemodialysis adequacy. Am. J. Kidney Dis. 2006;48(Suppl. 1): s12–47.
  40. Tattersall J., Martin-Malo A. Pedrini L., et al. EBPG guideline on dialysis strategies. Nephrol. Dial. Transplant. 2007;22(Suppl. 2):ii5–21. doi: 10.1093/ndt/gfm022.
  41. Cheung A.K., Levin N.W., Greene T., et al. Effects of high-flux hemodialysis on clinical outcomes: results of the HEMO study. J. Am. Soc. Nephrol. 2003;14(12):3251–63. doi: 10.1097/01.asn.0000096373.13406.94.
  42. Boschetti-de-Fierro A., Voigt M. Storr M., Krause B. MCO Membranes: Enhanced Selectivity in High-Flux Class. Sci. Rep. 2015;5:18448. doi: 10.1038/srep18448.
  43. Kirsch A.H., Lyko R., Nilsson L.G., et al. Performance of hemodialysis with novel medium cut-off dialyzers. Nephrol. Dial. Transplant. 2017;32(1):165–72. doi: 10.1093/ndt/gfw310.
  44. Ward R.A. Protein-leaking membranes for hemodialysis: a new class of membranes in search of an application? J. Am. Soc. Nephrol. 2005;16(8):2421–30. doi: 10.1681/ASN.2005010070.
  45. Boschetti-de-Fierro A., Voigt M., Storr M., Krause B. Extended characterization of a new class of membranes for blood purification: the high cut-off membranes. Int. J. Artif. Organs. 2013;36(7):455–63. doi: 10.5301/ijao.5000220.
  46. Storr M., A Ward R. Membrane innovation: closer to native kidneys. Nephrol. Dial. Transplant. 2018;33(3):22–7. doi: 10.1093/ndt/gfy228.
  47. Lamy T., Henri P., Lobbedez T., et al. Comparison between on-line high-efficiency hemodiafiltration and conventional high-flux hemodialysis for polyclonal free light chain removal. Blood Purif. 2014;37(2):93–8. doi: 10.1159/000357968.
  48. Hutchison C.A., Bradwell A.R., Cook M., et al. Treatment of acute renal failure secondary to multiple myeloma with chemotherapy and extended high cut-off hemodialysis. Clin. J. Am. Soc. Nephrol. 2009;4(4):745–54. doi: 10.2215/CJN.04590908.
  49. Gondouin B., Hutchison C.A. High cut-off dialysis membranes: current uses and future potential. Adv. Chron. Kidney Dis. 2011;18(3):180–87. doi: 10.1053/j.ackd.2011.02.006.
  50. Vanholder R., Glorieux G., De Smet R., Lameire N. European uremic toxin work G: new insights in uremic toxins. Kidney Int. Suppl. 2003;84:S6–10. doi: 10.1046/j.1523-1755.63.s84.43.x.
  51. Krishnasamy R., Hawley C.M., Jardine M.J., et al. Design and methods of the REMOVAL-HD study: a tRial Evaluating Mid cut-Off Value membrane clearance of Albumin and Light chains in HaemoDialysis patients. BMC. Nephrol. 2018;19(1):89. doi: 10.1186/s12882-018-0883-8.
  52. Urbani A., Sirolli V., Lupisella S., et al. Proteomic investigations on the effect of different membrane materials on blood protein adsorption during haemodialysis. Blood Transfus. 2012;10(Suppl. 2):s101–12. doi: 10.2450/2012.014S.
  53. Bonomini M., Pieroni L., Di Liberato L., et al. Examining hemodialyzer membrane performance using proteomic technologies. Ther. Clin. Risk Manag. 2017;14:1–9. doi: 10.2147/TCRM.S150824.
  54. Daugirdas J.T., Bernardo A.A. Hemodialysis effect on platelet count and function and hemodialysis-associated thrombocytopenia. Kidney Int. 2012;82(2):147–57. doi: 10.1038/ki.2012.130.
  55. Macleod A.M., Campbell M., Cody J.D., et al. Cellulose, modified cellulose and synthetic membranes in the haemodialysis of patients with end-stage renal disease. Cochrane Database Syst. Rev. 2005;(3):CD003234. doi: 10.1002/14651858.CD003234.pub2.
  56. Pascual M., Tolkoff-Rubin N., Schifferli J.A. Is adsorption an important characteristic of dialysis membranes? Kidney Int. 1996;49(2):309–13. doi: 10.1038/ki.1996.47.
  57. Campistol JM, Torregrosa JV, Ponz E, Fenollosa B. Beta-2-microglobulin removal by hemodialysis with polymethylmethacrylate membranes. Contrib Nephrol. 1999;125:76–85. doi: 10.1159/000059951.
  58. Galli F., Benedetti S., Buoncristiani U., et al. The effect of PMMA-based protein-leaking dialyzers on plasma homocysteine levels. Kidney Int. 2003;64(2):748–55. doi: 10.1046/j.1523-1755.2003.00134.x.
  59. Cohen G., Rudnicki M., Schmaldienst S., et al. Effect of dialysis on serum/plasma levels of free immunoglobulin light chains in end-stage renal disease patients. Nephrol. Dial. Transplant. 2002;17:879–83. doi: 10.1093/ndt/17.5.879.
  60. Oshihara W., Nagao H., Megano H., et al. Trial use of a polymethylmethacrylate membrane for the removal of free immunoglobulin light chains in dialysis patients. NDT. Plus. 2010;3(Suppl. 1):i3–7. doi: 10.1093/ndtplus/sfq029.
  61. Galli F., Benedetti S., Floridi A., et al. Glycoxidation and inflammatory markers in patients on treatment with PMMA-based protein-leaking dialyzers. Kidney Int. 2005;67(2):750–9. doi: 10.1111/j.1523-1755.2005.67138.x.
  62. Abe M., Hamano T., Wada A., et al. Renal Data Registry Committee, Japanese Society for Dialysis Therapy. Effect of dialyzer membrane materials on survival in chronic hemodialysis patients: Results from the annual survey of the Japanese Nationwide Dialysis Registry. PLoS One. 2017;12(9):e0184424. doi: 10.1371/journal.pone.0184424.
  63. Niwa T., Asada H., Tsutsui S., Miyazaki T. Efficient removal of albumin-bound furancarboxylic acid by protein-leaking hemodialysis. Am. J. Nephrol. 1995;15(6):463–7. doi: 10.1159/000168887.
  64. Duranton F., Cohen G., De Smet R., et al. Normal and pathologic concentrations of uremic toxins [published correction appears in J. Am. Soc. Nephrol. 2013;24(12):2127–9]. J. Am. Soc. Nephrol. 2012;23(7):1258–70. doi: 10.1681/ASN.2011121175.
  65. Vanholder R., De Smet R., Glorieux G., et al. Review on uremic toxins: classification, concentration, and interindividual variability. Kidney Int. 2003;63(5):1934–43. doi: 10.1046/j.1523-1755.2003.00924.x.
  66. Vanholder R., Schepers E., Pletinck A., et al. The uremic toxicity of indoxyl sulfate and p-cresyl sulfate: a systematic review. J. Am. Soc. Nephrol. 2014;25(9):1897–907. doi: 10.1681/ASN.2013101062.
  67. Baurmeister U., Vienken J., Ward R.A. Should dialysis modalities be designed to remove specific uremic toxins? Semin. Dial. 2009;22(4):454–7. doi: 10.1111/j.1525-139X.2009.00599.x.
  68. Lekawanvijit S., Krum H. Cardiorenal syndrome: role of protein-bound uremic toxins. J. Ren. Nutr. 2015;25(2):149–54. doi: 10.1053/j.jrn.2014.10.009.
  69. Werner C., Jacobasch H. Surface characterization of polymers for medical devices. Int. J. Artif. Organs. 1999;22(3):160–76. doi: 10.1177/039139889902200309.
  70. Vanholder R.C., Eloot S., Glorieux G.L. Future Avenues to Decrease Uremic Toxin Concentration. Am. J. Kidney Dis. 2016;67(4):664–76. Doi: 10.1053/ j.ajkd.2015.08.029.
  71. Stenvinkel P., Heimbürger O., Paultre F., et al. Strong association between malnutrition, inflammation, and atherosclerosis in chronic renal failure. Kidney Int. 1999;55(5):1899–911. doi: 10.1046/j.1523-1755.1999.00422.x.
  72. Bonomini M., Sirolli V., Pieroni L., et al. Proteomic Investigations into hemodialysis therapy. Int. J. Mol. Sci. 2015;16(12):29508–21. doi: 10.3390/ijms161226189.
  73. Pertosa G., Grandaliano G., Gesualdo L., Schena F.P. Clinical relevance of cytokine production in hemodialysis. Kidney Int. Suppl. 2000;76:S104–11. doi: 10.1046/j.1523-1755.2000.07613.x.
  74. Chanard J., Lavaud S., Randoux C., Rieu P. New insights in dialysis membrane biocompatibility: relevance of adsorption properties and heparin binding. Nephrol. Dial. Transplant. 2003;18(2):252–57. doi: 10.1093/ndt/18.2.252.
  75. shikawa I., Chikazawa Y., Sato K., et al. Proteomic analysis of serum, outflow dialysate and adsorbed protein onto dialysis membranes (polysulfone and pmma) during hemodialysis treatment using SELDI-TOF-MS. Am. J. Nephrol. 2006;26(4):372–80. doi: 10.1159/000094779.
  76. Kawanishi H., Mineshima M., Tomo T., et al. Classification of dialyzers (hollow fiber dialyzers) by functions 2013. J. Jap. Soc. Dial. Ther. 2013;46:501–6 (In Japanese).
  77. Kaiser T., Hermann A., Kielstein J.T., et al. Capillary electrophoresis coupled to mass spectrometry to establish polypeptide patterns in dialysis fluids. J. Chromatogr. A. 2003;1013(1–2):157–71. Doi: 10.1016/ S0021-9673(03)00712-X.
  78. Dihazi H., Muller C.A., Mattes H., Muller G.A. Proteomic analysis to improve adequacy of hemo- and peritoneal dialysis: Removal of small and high molecular weight proteins with high- and low-flux filters or a peritoneal membrane. Proteom. Clin. Appl. 2008;2(7–8):1167–82. doi: 10.1002/prca.200780143.
  79. Woods H.F., Nandakumar M. Improved outcome for haemodialysis patients treated with high-flux membranes. Nephrol. Dial. Transplant. 2000;15(Suppl. 1):36–42. doi: 10.1093/oxfordjournals.ndt.a027962.
  80. Ficheux A., Gayrard N., Szwarc I., et al. The use of SDS-PAGE scanning of spent dialysate to assess uraemic toxin removal by dialysis. Nephrol. Dial. Transplant. 2011;26(7):2281–89. doi: 10.1093/ndt/gfq709.
  81. Muñoz R., Gallardo I., Valladares E., et al. Online hemodiafiltration: 4 years of clinical experience. Hemodial. Int. 2006;10(Suppl. 1):S28–32. doi: 10.1111/j.1542-4758.2006.01187.x.
  82. Orasan R.A., Patiu I.M., Anghel D., et al. Variation of clinical and laboratory features in chronic dialysis patients treated with high-flux hemodialysis after switching to on-line hemodiafiltration. Int. Urol. Nephrol. 2013;45(5): 1415–22. doi: 10.1007/s11255-012-0341-7.
  83. Jean G., Hurot J.M., Deleaval P., et al. Online-haemodiafiltration vs. conventional haemodialysis: a cross-over study. BMC. Nephrol. 2015;16:70. doi: 10.1186/s12882-015-0062-0.
  84. Movilli E., Camerini C., Gaggia P., et al. Total Convection Affects Serum β2 Microglobulin and C-Reactive Protein but Not Erythropoietin Requirement following post-Dilutional Hemodiafiltration. Am. J. Nephrol. 2015;41(6):494–501. doi: 10.1159/000437171.
  85. Vilar E., Fry A.C., Wellsted D., et al. Long-term outcomes in online hemodiafiltration and high-flux hemodialysis: a comparative analysis. Clin. J. Am. Soc. Nephrol. 2009;4(12):1944–53. doi: 10.2215/CJN.05560809.
  86. Weng C.H., Hsu C.W., Hu C.C., et al. Association Between Hemodiafiltration and Hypoalbuminemia in Middle-Age Hemodialysis Patients. Medicine (Baltimore). 2016;95(15):e3334. doi: 10.1097/MD.0000000000003334.
  87. Bolasco P., Altieri P., Sorba G., et al. Adequacy in pre-dilution haemofiltration: Kt/V or infusion volume? The Sardinian Collaborative Study Group on Haemofiltration On-line. Nephrol. Dial. Transplant. 2000;15(Suppl. 2):60–4. doi: 10.1093/ndt/15.suppl_1.60.
  88. Krieter D.H., Hackl A., Rodriguez A., et al. Protein-bound uraemic toxin removal in haemodialysis and post-dilution haemodiafiltration. Nephrol. Dial. Transplant. 2010;25(1):212–8. doi: 10.1093/ndt/gfp437.
  89. Pedrini L.A., Cozzi G., Faranna P., et al. Transmembrane pressure modulation in high-volume mixed hemodiafiltration to optimize efficiency and minimize protein loss. Kidney Int. 2006;69(3):573–79. doi: 10.1038/sj.ki.5000110.
  90. Susantitaphong P., Siribamrungwong M., Jaber B.L. Convective therapies versus low-flux hemodialysis for chronic kidney failure: a meta-analysis of randomized controlled trials. Nephrol. Dial. Transplant. 2013;28(11): 2859–74. doi: 10.1093/ndt/gft396.
  91. Sakurai K. Biomarkers for evaluation of clinical outcomes of hemodiafiltration. Blood Purif. 2013;35(Suppl. 1):64–8. doi: 10.1159/000346364.
  92. Tsuchida K., Minakuchi J. Albumin loss under the use of the high-performance membrane. Contrib. Nephrol. 2011;173:76–83. doi: 10.1159/000328957.
  93. Nagai K., Tsuchida K., Ishihara N., et al. Implications of Albumin Leakage for Survival in Maintenance Hemodialysis Patients: A 7-year Observational Study. Ther. Apher. Dial. 2017;21(4):378–86. doi: 10.1111/1744-9987.12526.
  94. Nagai K., Tsuchida K., Hirose D., et al. The effect of albumin leakage in hemodialysis patients on redox status of serum albumin. J. Artif. Organs. 2016;19(3):310–14. doi: 10.1007/s10047-016-0900-2.
  95. Masakane I., Sakurai K. Current approaches to middle molecule removal: room for innovation. Nephrol. Dial. Transplant. 2018;33(Suppl. 3):iii12–21. doi: 10.1093/ndt/gfy224.
  96. Locatelli F., Martin-Malo A., Hannedouche T., et al. Effect of membrane permeability on survival of hemodialysis patients. J. Am. Soc. Nephrol. 2009;20(3):645–54. doi: 10.1681/ASN.2008060590.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Este site utiliza cookies

Ao continuar usando nosso site, você concorda com o procedimento de cookies que mantêm o site funcionando normalmente.

Informação sobre cookies