Нефропротективные эффекты ингибиторов натрий-глюкозного котранспортера 2-го типа


Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Доступ платный или только для подписчиков

Аннотация

В статье представлены данные о механизмах и клиническом значении нефропротективного действия ингибиторов натрий-глюкозного котранспортера 2-го типа (глифлозинов). обсуждаются эффекты, связанные с влиянием представителей данной фармакологической группы на скорость клубочковой фильтрации, уровень гликемии, диурез, кетогенез и другие факторы. Проанализированы результаты недавно проведенных экспериментальных и клинических исследований, направленных на изучение отдельных аспектов нефропротективного действия ингибиторов SGLT2 при сахарном диабете 2 типа и других патологических состояниях.

Полный текст

Доступ закрыт

Об авторах

Б. Т Даминов

Ташкентский педиатрический медицинский институт; Республиканский специализированный научно-практический медицинский центр нефрологии и трансплантации почки

Email: nefrologiya2019@mail.ru
д.м.н., профессор кафедры «Факультетские внутренние болезни, профпатология, ВПТ, госпитальные внутренние болезни и ПВБ» Ташкентского педиатрического медицинского института; директор Республиканского специализированного научно-практического медицинского центра нефрологии и трансплантации почки Ташкент, Узбекистан

Ш. С Абдуллаев

Ташкентский педиатрический медицинский институт

Email: dr.sherzod@rambler.ru
д.м.н., доцент кафедры «Факультетские внутренние болезни, профпатология, ВПТ, госпитальные внутренние болезни и ПВБ» Ташкент, Узбекистан

О. Н Шарапов

Ташкентский педиатрический медицинский институт; Республиканский специализированный научно-практический медицинский центр нефрологии и трансплантации почки

Email: olimkhon@gmail.com
докторант кафедры «Факультетские внутренние болезни, профпатология, ВПТ, госпитальные внутренние болезни и ПВБ» Ташкентского педиатрического медицинского института; врач-нефролог Республиканского специализированного научно-практического медицинского центра нефрологии и трансплантации почки Ташкент, Узбекистан

Список литературы

  1. Thrasher J. Pharmacologic Management of Type 2 Diabetes Mellitus: Available Therapies. Am. J. Cardiol. 2017;120(1):S4-S16. Doi: 10.1016/j. amjcard.2017.05.009.
  2. Демидова Т.Ю. Сосудистые осложнения сахарного диабета 2 типа за гранью гликемического контроля. Сахарный диабет. 2016;3:111-116.
  3. Bonadonna R.C., Borghi C., Consoli A., Volpe M. Novel antidiabetic drugs and cardiovascular risk: Primum non nocere. Nutr. Metab. Cardiovasc. Dis. 2016;26:759-766. doi: 10.1016/j.numecd.2016.05.007.
  4. Satoh H. Pleiotropic effects of SGLT2 inhibitors beyond the effect on glycemic control. Diabetol. Int. 2018;9:212-214. doi: 10.1007/s1334018-0367-x.
  5. Maltese G, Abou-Saleh A., Gnudi L., Karalliedde J. Preventing diabetic renal disease: the potential reno-protective effects of SGLT2 inhibitors. Br. J. Diabetes Vasc. Dis. 2015;15:114-118. doi: 10.15277/bjdvd.2015.031.
  6. Prie D. Familial renal glycosuria and modifications of glucose renal excretion. Diabetes Metab. 2014;40(1):S12-S16. Doi: 10.1016/ S1262-3636(14)72690-4.
  7. Vallon V. The mechanisms and therapeutic potential of SGLT2 inhibitors in diabetes mellitus. Annu. Rev. Med. 2015;66:255-270. doi: 10.1146/annurev-med-051013-110046.
  8. Maldonado-Cervantes M.I., Galicia O.G., Moreno-Jaime B. et al. Autocrine modulation of glucose transporter SGLT2 by IL-6 and TNF-a in LLC-PK1 cells. J. Physiol. Biochem. 2012;68:411-420. doi: 10.1007/s13105-012-0153-3.
  9. Panchapakesan U, Pegg K., Gross S. et al. Effects of SGLT2 inhibition in human kidney proximal tubular cells - renoprotection in diabetic nephropathy? PLoS One. 2013;8:e54442. doi: 10.1371/journal.pone.0054442.
  10. Vallon V., Thomson S.C. Targeting renal glucose reabsorption to treat hypergly-caemia: the pleiotropic effects of SGLT2 inhibition. Diabetologia. 2017;60:215-225. doi: 10.1007/s00125-016-4157-3.
  11. Gembardt F., Bartaun C., Jarzebska N. et al. The SGLT2 inhibitor empa-gliflozin ameliorates early features of diabetic nephropathy in BTBR ob/ob type 2 diabetic mice with and without hypertension. Am. J. Physiol. Renal Physiol. 2014;307:F317-F325. doi: 10.1152/ajprenal.00145.2014.
  12. Ojima A., Matsui T., Nishino Y. et al. Empagliflozin, an Inhibitor of Sodium-Glucose Cotransporter 2 Exerts Anti-Inflammatory and Antifibrotic Effects on Experimental Diabetic Nephropathy Partly by Suppressing AGEs-Receptor Axis. Horm. Metab. Res. 2015;47:686-692. doi: 10.1055/s-0034-1395609.
  13. Terami N., Ogawa D., Tachibana H. et al. Long-term treatment with the sodium glucose cotransporter 2 inhibitor, dapagliflozin, ameliorates glucose homeostasis and diabetic nephropathy in db/db mice. PLoS One. 2014;24:e100777. doi: 10.1371/journal.pone.0100777.
  14. Hatanaka T., Ogawa D., Tachibana H. et al. Inhibition of SGLT2 alleviates diabetic nephropathy by suppressing high glucose-induced oxidative stress in type 1 diabetic mice. Pharmacol. Res. Perspect. 2016;4:e00239. Doi: 10.1002/ prp2.239.
  15. Nagata T., Fukuzawa T., Takeda M. et al. Tofogliflozin, a novel sodium-glucose co-transporter 2 inhibitor, improves renal and pancreatic function in db/db mice // Br. J. Pharmacol 2013. Vol. 170. P. 519-531. doi: 10.1111/bph.12269.
  16. Kawanami D., Matoba K., Takeda Y. et al. SGLT2 Inhibitors as a Therapeutic Option for Diabetic Nephropathy. Int. J. Mol. Sci. 2017;18:E1083. doi: 10.3390/ijms18051083.
  17. Jaikumkao K., Pongchaidecha A., Chueakula N. et al. Renal outcomes with sodium glucose cotransporter 2 (SGLT2) inhibitor, dapagliflozin, in obese insulin-resistant model // Biochim. Biophys. Acta. 2018;1864:2021-2033. doi: 10.1016/j.bbadis.2018.03.017.
  18. Kojima N., Williams J.M., Slaughter T.N. et al. Renoprotective effects of combined SGLT2 and ACE inhibitor therapy in diabetic Dahl S rats. Physiol. Rep. 2015;3:e12436. doi: 10.14814/phy2.12436.
  19. Li L., Konishi Y., Morikawa T. et al. Effect of a SGLT2 inhibitor on the systemic and intrarenal renin-angiotensin system in subtotally nephrectomized rats. J. Pharm Sci. 2018;137:220-223. doi: 10.1016/j.jphs.2017.10.006.
  20. Zhang Y, Thai K., Kepecs D.M., Gilbert R.E. Sodium-glucose linked cotransporter-2 inhibition does not attenuate disease progression in the rat remnant kidney model of chronic kidney disease. PLoS ONE. 2016;11:e0144640. doi: 10.1371/journal.pone.0144640.
  21. Tahara A., Takasu T. Prevention of progression of diabetic nephropathy by the SGLT2 inhibitor ipragliflozin in uninephrectomized type 2 diabetic mice. Eur. J. Pharmacol. 2018;830:68-75. doi: 10.1016/j.ejphar.2018.04.024.
  22. Ma Q, Steiger S, Anders H.J. Sodium glucose transporter-2 inhibition has no renoprotective effects on non-diabetic chronic kidney disease. Physiol. Rep. 2017;5:e13228. doi: 10.14814/phy2.13228.
  23. Chang Y.-K., Choi H, Jeong J.Y. et al. Dapagliflozin, SGLT2 Inhibitor, attenuates renal ischemia-reperfusion injury. PLoS ONE. 2016;11:e0158810. doi: 10.1371/journal.pone.0158810.
  24. Zapata-Morales J.R., Galicia-Cruz O.G., Franco M., Morales F.M. Hypoxia-inducible factor-1a (HIF-1a) protein diminishes sodium glucose transport 1 (SGLT1) and SGLT2protein expression in renal epithelial tubular cells (LLC-PK1) under hypoxia. J. Biol. Chem. 2014;289:346-357. doi: 10.1074/jbc. M113.526814.
  25. Shimazu T., Hirschey M.D., Newman J. et al. Suppression of oxidative stress by beta-hydroxybutyrate, an endogenous histone deacetylase inhibitor. Science. 2013;339:211-214. doi: 10.1126/science.1227166.
  26. Mudaliar S., Alloju S., Henry R.R. Can a Shift in Fuel Energetics Explain the Beneficial Cardiorenal Outcomes in the EMPA-REG OUTCOME Study? A Unifying Hypothesis. Diabetes Care. 2016;39:1115-1122. Doi: 10.2337/ dc16-0542.
  27. Perkovic V., de Zeeuw D., Mahaffey K.W. et al. Canagliflozin and renal outcomes in type 2 diabetes: results from the CANVAS Program randomised clinical trials. Lancet Diabetes Endocrinol. 2018;6:691-704. Doi: 10.1016/ S2213-8587(18)30141-4.
  28. Wiviott S.D., Raz I., Bonaca M.P. et al. Dapagliflozin and Cardiovascular Outcomes in Type 2 Diabetes. N. Engl. J. Med. 2018. Nov 10. [Epub ahead of print]. doi: 10.1056/NEJMoa1812389.
  29. Clegg L.E., Heerspink H.J.L., Penland R.C. et al. Reduction of Cardiovascular Risk and Improved Estimated Glomerular Filtration Rate by SGLT2 Inhibitors, Including Dapagliflozin, Is Consistent Across the Class: An Analysis of the Placebo Arm of EXSCEL. Diabetes Care. 2019;42:318-326. Doi: 10.2337/ dc18-1871.
  30. Tang H., Li D., Zhang J. et al. Sodium-glucose co-transporter-2 inhibitors and risk of adverse renal outcomes among patients with type 2 diabetes: A network and cumulative meta-analysis of randomized controlled trials. Diabetes Obes. Metab. 2017;19:1106-1115. doi: 10.1111/dom.12917
  31. Cherney D.Z., Perkins B.A., Soleymanlou N. et al. Renal hemodynamic effect of sodium-glucose cotransporter 2 inhibition in patients with type 1 diabetes mellitus. Circulation. 2014;129:587-597. Doi: 10.1161/ CIRCULA TIONAHA.113.005081.
  32. Gomez D.M. Evaluation of renal resistances, with special reference to changes in essential hypertension. J. Clin. Invest. 1951;30:1143-1155.
  33. Skrtic M., Yang G.K., Perkins B.A. Characterisation of glomerular haemodynamic responses to SGLT2 inhibition in patients with type 1 diabetes and renal hyperfiltration. Diabetologia. 2014;57:2599-2602. doi: 10.1007/s00125-014-3396-4.
  34. Dekkers C.C.J., Petrykiv S., Laverman G.D. et al. Effects of the SGLT-2 inhibitor dapagliflozin on glomerular and tubular injury markers. Diabetes Obes Metab. 2018;2:1988-1993. doi: 10.1111/dom.13301.
  35. Fioretto P., Del Prato S., Buse J.B. et al. Efficacy and safety of dapagliflozin in patients with type 2 diabetes and moderate renal impairment (chronic kidney disease stage 3A): The DERIVE Study. Diabetes Obes. Metab. 2018;20:2532-2540. doi: 10.1111/dom.13413.
  36. Petrykiv S., Sjostrom C.D., Greasley P.J. Differential Effects of Dapagliflozin on Cardiovascular Risk Factors at Varying Degrees of Renal Function. Clin. J. Am. Soc. Nephrol. 2017;12:751-759. doi: 10.2215/CJN.10180916.
  37. U. S. National Library of Medicine Clinical Trials Database. URL: https:// clinicaltrials.gov.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

Данный сайт использует cookie-файлы

Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie, которые обеспечивают правильную работу сайта.

О куки-файлах