COVID-19 и поражение почек


Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Доступ платный или только для подписчиков

Аннотация

В обзоре приводятся данные о частоте и причинах возникновения и развития острого повреждения почек (ОПП) при COVID-19. Проведен обзор имеющейся научной информации относительно возникновения и/или прогрессирования хронической болезни почек (ХБП) при covid-19, а также сделан акцент на редких формах поражений почек, которые могут развиваться при covid-19. Уделено внимание аспектам этиопатогенеза и клинической картины поражения почек при covid-19. Авторы при написании статьи глобально не затрагивали вопросов лечения почечной патологии, сформированной при covid-19, поскольку оно в настоящее время в основном сводится, с одной стороны, к лечению конкретной формы заболевания почек, с другой - к лечению непосредственно коронавирусной инфекции. Понимание процессов альтерации клеток почечной ткани при этом заболевании, возможно, поможет в будущем определить подходы к профилактике поражения почек и восстановлению их функции у пациентов, болеющих или перенесших covid-19.

Полный текст

Доступ закрыт

Об авторах

Лариса Викторовна Михайлова

ФГАОУ во «Балтийский федеральный университет им. и. Канта»

Email: mihalysa@mail.ru
к.м.н., доцент кафедры терапии медицинского института ФГАОУ ВО Балтийский федеральный университет им. И. Канта

Дмитрий Олегович Шелег

ФГАОУ во «Балтийский федеральный университет им. и. Канта»

Email: sch994@rambler.ru
ассистент кафедры терапии медицинского института

Роберт Стефанович Богачев

ФГАОУ во «Балтийский федеральный университет им. и. Канта»

Email: robcm@rambler.ru
д.м.н., профессор, заведующий кафедрой терапии медицинского института

Список литературы

  1. Liu Y.F, Zhang Z, Pan X.L., et al. The chronic kidney disease and acute kidney injury involvement in COVID-19 pandemic: A systematic review and meta-analysis. PLoS One. 2021;16(1):e0244779. [Published 2021 Jan 5]. doi: 10.1371/journal.pone.0244779.
  2. Kunutsor S.K., Laukkanen J.A. Renal complications in COVID-19: a systematic review and meta-analysis. Ann. Med. 2020;52(7):345-53. Doi: 10. 1080/07853890.2020.1790643. [Epub 2020 Jul 10. PMID: 32643418].
  3. Henry B.M., Lippi G. Chronic kidney disease is associated with severe coronavirus disease 2019 (COVID-19) infection. Int. Urol. Nephrol. 2020;52:1193-94. https://doi.org/10.1007/s11255-020-02451-9.
  4. Qi F., Qian S., Zhang S., Zhang Z. Single cell RNA sequencing of 13 human tissues identify cell types and receptors of human coronaviruses. Biochem. Biophys. Res. Commun. 2020;526(1):135-40, Doi: 10.1016/ j.bbrc.2020.03.044.
  5. Pan X.-W., Xu D., Zhang H., et al. Identification of a potential mechanism of acute kidney injury during the COVID-19 outbreak: A study based on singlecell transcriptome analysis. Intens. Care Med. 2020;46(6): 1114-16. doi: 10.1007/s00134-020-06026-1.
  6. Diao B., Feng Z., Wang C., et al. Human Kidney is a Target for Novel Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). Infection. MedRxiv. 2020. doi: 10.1101/2020.03.04.20031120.
  7. Su H., Yang M., Wan C., et al. Renal histopathological analysis of 26 postmortem findings of patients with COVID-19 in China. Kidney Int. 2020. doi: 10.1016/j.kint.2020.04.003.
  8. Cheng Y., Luo R., Wang K., et al. Kidney disease is associated with in-hospital death of patients with COVID-19. Kidney Int. 2020:1-10. Doi: 10.1016/ j.kint.2020.03.005.
  9. Li., Wu M., Yao J., et al. Caution on kidney dysfunctions of COVID-19 patient. 2020. doi: 10.1101/2020.02.08.20021212.
  10. Li X, Geng M, Peng Y, et al. Molecular immune pathogenesis and diagnosis of COVID-19. J. Pharm. Anal. 2020;10(2):102-8. Doi: 10.1016/ j.jpha.2020.03.001.
  11. Petejova N., Martinek A. Acute kidney injury due to rhabdomyolysis and renal replacement therapy: A critical review. Crit. Care. 2014; 18. Doi: 10.1186/ cc13897.
  12. Chu K.H., Tsang W.K., Tang C.S., et al. Acute renal impairment in coronavirusassociated severe acute respiratory syndrome. Kidney Int. 2005;67:698-705. doi: 10.1111/j.1523-1755.2005.67130.x.
  13. Del Vecchio L., Locatelli F. Hypoxia response and acute lung and kidney injury: possible implications for therapy of COVID-19. Clin. Kidney J. 2020;13(4):494-99.
  14. Batlle D., Soler M.J., Sparks M.A., et al. Acute Kidney Injury in COVID-19: Emerging Evidence of a Distinct Pathophysiology. J. Am. Soc. Nephrol. 2020;31:1380-83. doi: 10.1681/ASN.2020040419.
  15. Kuppalli K., Rasmussen A.L. A glimpse into the eye of the COVID-19 cytokine storm. EBioMedicine. 2020;55:102789. doi: 10.1016/j.ebiom.2020.102789.
  16. Guan W., Ni Z., Hu Y., et al. Clinical characteristics of coronavirus disease 2019 in China. N. Engl. J. Med. 2020;382:1708-20. Doi: 10.1056/ NEJMoa2002032.
  17. Chen N, Zhou M, Dong X, et al. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study. Lancet. 2727;395:577-13. Doi: 10.1016/ S0140-6736(20)30211-7.
  18. Chen T., Wu D., Chen H., et al. Clinical characteristics of 113 deceased patients with Coronavirus disease 2019: retrospective study. BMJ. 2020. 368:m1091. 10.1136/bmj.m1091.
  19. Arentz M., Yim E., Klaff L., et al. Characteristics and outcomes of 21 critically ill patients with covid-19 in Washington state. JAMA. 2020;323:1612-14. doi: 10.1001/jama.2020.4326.
  20. Hirsch J.S., Ng J.H., Ross D.W., et al. Acute Kidney Injury in Patients Hospitalized with Covid-19. Kidney Int. 2727;98:279-18. Doi: 10.1016/j. kint.2020.05.006.
  21. Coca A., Burballa C., Centellas-Perez F.J., et al. Outcomes of COVID-19 Among Hospitalized Patients With Non-dialysis CKD. Front. Med. (Lausanne). 2020;7:615312. [Published2020Dec 3]. doi: 10.3389/fmed.2020.615312.
  22. Pei G., Zhang Z, Peng J., et al. Renal involvement and early prognosis in patients with COVID-19 pneumonia. J. Am. Soc. Nephrol. 2020;31:1157-65. doi: 10.1681/ASN.2020030276.
  23. Narayanan M. The many faces of infection in CKD: evolving paradigms, insights, and novel therapies. Adv. Chronic. Kidney Dis. 2019;26:5-7. doi: 10.1053/j.ackd.2018.10.001.
  24. Dalrymple L.S., Go A.S. Epidemiology of acute infections among patients with chronic kidney disease. Clin. J. Am. Soc. Nephrol. 2008;3:1487-93. doi: 10.2215/CJN.01290308.
  25. Syed-Ahmed M., Narayanan M. Immune dysfunction and risk of infection in chronic kidney disease. Adv. Chronic. Kidney Dis. 2019;26:8-15. doi: 10.1053/j.ackd.2019.01.004.
  26. Litjens N.H., van Druningen C.J., Betjes M.G. Progressive loss of renal function is associated with activation and depletion of naive T lymphocytes. Clin. Immunol. 2006;118:83-91. doi: 10.1016/j.clim.2005.09.007.
  27. Williamson E.J., Walker A.J., Bhaskaran K. Factors associated with COVID-19-related death using Open SAFELY. Nature. 2020;584(7821): 430-36.
  28. Cummings M.J., Baldwin M.R., Abrams D. Epidemiology, clinical course, and outcomes of critically ill adults with COVID-19 in New York City: a prospective cohort study. Lancet. 2020;395(10239):1763-70.
  29. Gansevoort R.T., Hilbrands L.B. CKD is a key risk factor for COVID-19 mortality. Nat. Rev. Nephrol. 2020;26:1-2.
  30. Anding K., Gross P., Rost J.M., et al. The influence of uraemia and haemodialysis on neutrophil phagocytosis and antimicrobial killing. Nephrol. Dial. Transplant. 2773;18:2766-63. doi: 17.1793/ndt/ gfg330.
  31. Ando M., Shibuya A., Tsuchiya K., Akiba T., Nitta K. Reduced expression of Toll-like receptor 4 contributes to impaired cytokine response of monocytes in uremic patients. Kidney Int. 2006;70(2):358-62.
  32. Vaziri N.D. Oxidative stress in uremia: nature, mechanisms, and potential consequences. Semin. Nephrol. 2004;24:469-73. doi: 10.1016/.semnephrol.2004.06.026.
  33. Goligorsky M.S. Pathogenesis of endothelial cell dysfunction in chronic kidney disease: a retrospective and what the future may hold. Kidney Res. Clin. Pract. 2015;34:76-82. Doi: 10.1016/ j.krcp.2015.05.003.
  34. Abbate M., Zoja C., Remuzzi G. How does proteinuria cause progressive renal damage? J. Am. Soc. Nephrol. 2006;17:2974-84. Doi: 10.1681/ ASN.200604037.
  35. Ng J.H., Hirsch J.S., Hazzan A., et al. Outcomes Among Patients Hospitalized With COVID-19 and Acute Kidney Injury. AJKD. 2021;77(2). Doi link: https://doi.org/10.1053/j.ajkd.2020.09.002
  36. Flythe J.E., Assimon M.M., Tugman M.J., et al. Characteristics and Outcomes of Individuals With Pre-existing Kidney Disease and COVID-19 Admitted to Intensive Care Units in the United States. Am. J. Kidney Dis. 2021;77(2):1 90-203.e1. doi: 10.1053/j.ajkd.2020.09.003.
  37. Kang S.H., Kim S.W., Kim A.Y., et al. Association between Chronic Kidney Disease or Acute Kidney Injury and Clinical Outcomes in COVID-19 Patients. J. Korean Med. Sci. 2020;35(50):e434. doi: 10.3346/jkms.2020.35. e434. [PMID: 33372426; PMCID: PMC7769703].
  38. James M.T., Grams M.E., Woodward M., et al. A meta-analysis of the association of estimated GFR, albuminuria, diabetes mellitus, and hypertension with acute kidney injury. Am. J. Kidney Dis. 2015;66:602-12. Doi: 10.1053/ j.ajkd.2015.02.338.
  39. Wu VC, Huang TM, Lai CF, Shiao CC, Lin YF, Chu TS, et al. Acute-on-chronic kidney injury at hospital discharge is associated with long-term dialysis and mortality. Kidney Int. 2011;80:1222-30. doi: 10.1038/ki.2011.259.
  40. Nuzzo D., Picone P. Potential neurological effects of severe COVID-19 infection. Neurosci. Res. 2020;158:1-5.
  41. Sterne J.A.C., Murthy S., Diaz J.V. Association between administration of systemic corticosteroids and mortality among critically ill patients with COVID-19: a meta-analysis. JAMA. 2020;324(13):1-13.
  42. Wu J., Li J., Zhu G. Clinicalfeatures of maintenance hemodialysis patients with 2019 novel coronavirus-infected pneumonia in Wuhan, China. Clin. J. Am. Soc. Nephrol 2020;15(8):1139-45.
  43. Corbett R.W., Blakey S., Nitsch D. Epidemiology of COVID-19 in an urban dialysis center. J. Am. Soc. Nephrol 2020;31(8):1815-23.
  44. Basile C., Combe C., Pizzarelli F., et al. Recommendations for the prevention, mitigation and containment of the emerging SARS-CoV-2 (COVID-19) pandemic in haemodialysis centres. Nephrol. Dial. Transplant. 2020; 35:737-41.
  45. Rombola G., Heidempergher M., Pedrini L., et al. Practical indications for the prevention and management of SARS-CoV-2 in ambulatory dialysis patients: lessons from the first phase of the epidemics in Lombardy. J. Nephrol. 2020;33:193-96.
  46. Hoilat G.J., Das G., Shahnawaz M., et al. COVID-19 induced collapsing glomerulopathy and role of APOL1. QJM. 2020 Dec 26. doi: 10.1093/qjmed/ hcaa335.
  47. Kissling S., Rotman S., Gerber C., et al. Collapsing glomerulopathy in a COVID-19 patient. Kidney Int. 2020;98:228-31.
  48. Peleg Y., Kudose S., D’Agati V., et al. Acute kidney injury due to collapsing glomerulopathy following COVID-19 infection. Kidney Intern. Rep. 2020;5(6):940-45.
  49. Larsen C.P., Bourne T.D., Wilson J.D., et al. Collapsing glomerulopathy in a patient with COVID-19. Kidney Intern. Rep. 2020;5(6):935-39.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

Данный сайт использует cookie-файлы

Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie, которые обеспечивают правильную работу сайта.

О куки-файлах