ПРИЧИНЫ НЕОПРЕДЕЛЁННОСТИ В ПАЛЕОКЛИМАТИЧЕСКИХ РЕКОНСТРУКЦИЯХ ПО ИЗОТОПНОМУ СОСТАВУ КИСЛОРОДА ЛЕДНИКОВОГО ЛЬДА ЭЛЬБРУСА (ЗАПАДНОЕ ПЛАТО)

Обложка

Цитировать

Полный текст

Аннотация

Выполнены измерения изотопного состава кислорода в неглубоких кернах, полученных в разные годы на Западном плато Эльбруса. Совмещение изотопной записи (δ18О) по глубине для трёх кернов показало, что в пределах локального участка Западного плато до 330 мм вод. экв. в слое годовой аккумуляции, т.е. около 20% средней годовой аккумуляции может быть сформировано за счёт перераспределения выпавшего снега. Неточности в реконструкции температур по среднесезонным значениям δ18О связаны с изменением сезонных пропорций в накоплении снега и с неравномерностью выпадения осадков внутри сезонов.

Об авторах

Ю. Н. Чижова

Институт геологии рудных месторождений, петрологии, минералогии и геохимии РАН; Институт географии РАН

Автор, ответственный за переписку.
Email: eacentr@yandex.ru
Россия, Москва; Россия, Москва

В. Н. Михаленко

Институт географии РАН

Email: eacentr@yandex.ru
Россия, Москва

С. С. Кутузов

Институт географии РАН; Национальный исследовательский университет “Высшая школа экономики”,

Email: eacentr@yandex.ru
Россия, Москва; Россия, Москва

И. И. Лаврентьев

Институт географии РАН

Email: eacentr@yandex.ru
Россия, Москва

В. Я. Липенков

Институт географии РАН; Арктический и Антарктический научно-исследовательский институт

Email: eacentr@yandex.ru
Россия, Москва; Россия, Санкт-Петербург

А. В. Козачек

Арктический и Антарктический научно-исследовательский институт

Email: eacentr@yandex.ru
Россия, Санкт-Петербург

Список литературы

  1. Ekaykin A.A., Kozachek A.V., Mikhalenko V.N. Sposob vosstanovleniya ryadov meteorologicheskih harakteristik po dannym issledovaniya ledyanyh kernov gornyh rajonov. Method of restoring series of meteorological characteristics from research data of mountain area ice cores. Patent 2643706. Registration date: 05.02.2018.
  2. Kozachek A.B., Ekaikin A.A., Mikhalenko V.N., Lipenkov V.Ya., Kutuzov S.S. Isotopic composition of ice cores obtained on the Western Plateau of Elbrus. Led i Sneg. Ice and Snow. 2015, 55 (4): 35–49 [In Russian].
  3. Ledniki i klimat Elbrusa. Glaciers and climate of Elbrus. Moscow, St. Petersburg: Nestor-Istoriya, 2020: 372 p. [In Russian].
  4. Lavrentiev I.I., Mikhalenko V.N., Kutuzov S.S. Ice thickness and bedrock relief of the western Elbrus plateau. Led i Sneg. Ice and Snow. 2010, 2 (110): 12–18 [In Russian].
  5. Lavrentiev I.I., Kutuzov S.S., Mikhalenko V.N., Sudakova M.S., Kozachek A.V. Spatio-temporal variability of snow accumulation on the Western plateau of Elbrus (Central Caucasus). Led i Sneg. Ice and Snow. 2022, 62 (2): 165–178 [In Russian].
  6. Mikhalenko V.N., Kutuzov S.S., Lavrentiev I.I., Toropov P.A., Vladimirova D.O., Abramov A.A., Matskovsky V.V. Glacioclimatic studies of the Institute of Geography of the Russian Academy of Sciences in the crater of the Eastern peak of Elbrus in 2020. Led i Sneg. Ice and Snow. 2021, 61 (1): 149–160 [In Russian].
  7. Mikhalenko V.N. Ice drilling near the top of Elbrus. Led i Sneg. Ice and Snow. 2010, 1 (109): 123–126 [In Russian].
  8. Rototaeva O.V., Nosenko G.A., Kerimov A.M., Kutuzov S.S., Lavrentiev I.I., Nikitin S.A., Kerimov A.A., Tarasova L.N. Changes in the mass balance of the Garabashi (Elbrus) glacier at the turn of the 20th–21st centuries. Led i Sneg. Ice and Snow. 2019, 59 (1): 5–22 [In Russian].
  9. Bohleber P., Wagenbach D., Schöner W., Böhm R. To what extent do water isotope records from low accumulation Alpine ice cores reproduce instrumental temperature series? Tellus B: Chemical and Physical Meteorology. 2013, 65 (1): 20148. https://doi.org/10.3402/tellusb.v65i0.20148
  10. Craig H. Isotopic variations in meteoric waters. Science. 1961, 133 (3465): 1702–1703.
  11. Cuffey K.M., Steig E.J. Isotopic diffusion in polar firn: implications for interpretation of seasonal climate parameters in ice-core records, with emphasis on central Greenland. Journ. of Glaciology. 1998, 44: 273–284.
  12. Dansgaard W. Stable isotopes in precipitation. Tellus. 1964, 16: 436–468.
  13. Dansgaard W., Johnsen S.J., Clausen H.B., Dahl-Jensen D., Gundestrup N.S., Hammer C.U., Hvidberg C.S., Steffensen J.P., Sveinbjörnsdottir A.E., Jouzel J., Bond G. Evidence for general instability of past climate from a 250-kyr ice-core record. Nature. 1993, 364: 218–220. https://doi.org/10.1038/364218a0
  14. Fisher D.A., Koerner R.M., Paterson W.S.B., Dansgaard W., Gundestrup N., Reeh N. Effect of wind scouring on climatic records from ice-core oxygen-isotope profiles. Nature. 1983, 301: 205–209. https://doi.org/10.1038/301205a
  15. Fisher D.A., Reeh N., Clausen H.B. Stratigraphic noise in time series derived from ice cores. Annals of Glaciology. 1985, 7: 76–83.
  16. Fisher D., Koerner R. The effects of wind on δ(18O) and accumulation give an inferred record of seasonal δ amplitude from the Agassiz Ice Cap, Ellesmere Island, Canada. Annals of Glaciology. 1988, 10: 34–37. https://doi.org/10.3189/S0260305500004122
  17. Johnsen S.J. Stable isotope homogenization of polar firn and ice. In Isotopes and Impurities in Snow and Ice. Proceedings of the Grenoble Symposium, IAHS Publ., Grenoble, France, 1977. No. 118: 210–219.
  18. Johnsen S.J., Clausen H.B., Cuffey K.M., Hoffmann G., Schwander J., Creyts T. Diffusion of stable isotopes in polar firn and ice: the isotope effect in firn diffusion. In Physics of ice core records, edited by Hondoh T. Hokkaido Univ. Press, Sapporo, Japan, 2000: 121–140.
  19. Jouzel J., Alley R.B., Cuffey K., Dansgaard W., Grootes P., Hoffmann G., Johnsen S.J., Koster R., Peel D., Shuman C., Stievenard M., Stuiver M., White J. Validity of the temperature reconstruction from water isotopes in ice cores. Journ. of Geophysical Research. Oceans. 1997, 102: 26471–26487.
  20. Markle B., Steig E. Improving temperature reconstructions from ice-core water-isotope records. Climate of the Past. 2022, 18: 1321–1368.
  21. Merlivat L., Jouzel J. Global climatic interpretation of the deuterium-oxygen 18 relationship for precipitation. Journ. of Geophysical Research. Oceans. 1979, 84: 5029–5033.
  22. Mikhalenko V., Sokratov S., Kutuzov S., Ginot P., Legrand M., Preunkert S., Lavrentiev I., Kozachek A., Ekaykin A., Fain X., Lim S., Schotterer U., Lipenkov V., Toropov P. Investigation of a deep ice core from the Elbrus western plateau, the Caucasus, Russia. The Cryosphere. 2015, 9: 2253–2270. https://doi.org/org/10.5194/tc-9-2253-2015
  23. Münch T., Kipfstuhl S., Freitag J., Meyer H., Laepple T. Regional climate signal vs. local noise: a two-dimensional view of water isotopes in Antarctic firn at Kohnen station, Dronning Maud Land. Climate of the Past Discussions. 2015, 11: 5605–5649.
  24. Neumann T.A., Waddington E.D. Effects of firn ventilation on isotopic exchange. Journ. of Glaciology. 2004, 50: 183–194.
  25. Sime L.C., Marshall G.J., Mulvaney R., Thomas E.R. Interpreting temperature information from ice cores along the Antarctic Peninsula: ERA40 analysis. Geophys. Research Letters. 2009, 36: L18801. https://doi.org/10.1029/2009GL038982
  26. Sime L.C., Lang N., Thomas E.R., Benton A.K., Mulvaney R. On high-resolution sampling of short ice cores: dating and temperature information recovery from Antarctic Peninsula virtual cores. Journ. of Geophys. Research. 2011, 116: D20117. https://doi.org/10.1029/2011JD015894
  27. Toropov P.A., Aleshina M.A., Grachev A.M. Large-scale climatic factors driving glacier recession in the Greater Caucasus, 20th–21st century. International Journ. of Climatology. 2019, 39 (12): 4703–4720.
  28. Persson A., Langen P.L., Ditlevsen P., Vinther B.M. The influence of precipitation weighting on interannual variability of stable water isotopes in Greenland. Journ. of Geophys. Research. 2011, 116: D20120. https://doi.org/10.1029/2010JD015517
  29. Petit J.R., Jouzel J., Raynaud D., Barkov N.I., Barnola J.M., Basile I., Bender M., Chappellaz J., Davis M., Delaygue G., Delmotte M., Kotlyakov V.M., Legrand M., Lipenkov V.Y., Lorius C., Pépin L., Ritz C., Saltzman E., Stievenard M. Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica. Nature. 1999, 399: 429–436.
  30. Preunkert S., Legrand M., Kutuzov S., Ginot P., Mikhalenko V., Friedrich R. The Elbrus (Caucasus, Russia) ice core record – Part 1: reconstruction of past anthropogenic sulfur emissions in south-eastern Europe. Atmospheric Chemistry and Physics. 2019, 19: 14119–14132. https://doi.org/10.5194/acp-19-14119-2019
  31. Steen-Larsen H.C., Masson-Delmotte V., Hirabayashi M., Winkler R., Satow K., Prié F., Bayou N., Brun E., Cuffey K.M., Dahl-Jensen D., Dumont M., Guillevic M., Kipfstuhl S., Landais A., Popp T., Risi C., Steffen K., Stenni B., Sveinbjörnsdottír A.E. What controls the isotopic composition of Greenland surface snow? Climate of the Past. 2014, 10: 377–392. https://doi.org/10.5194/cp-10-377-2014
  32. Town M.S., Warren S.G., von Walden P., Waddington E.D. Effect of atmospheric water vapor on modification of stable isotopes in near-surface snow on ice sheets. Journ. of Geophys. Research. 2008, 113: D24303. https://doi.org/10.1029/2008JD009852
  33. Waddington E.D., Steig E.J., Neumann T.A. Using characteristic times to assess whether stable isotopes in polar snow can be reversibly deposited. Annals of Glaciology. 2002, 35: 118–124.
  34. Whillans I.M., Grootes P.M. Isotopic diffusion in cold snow and firn. Journ. of Geophys. Research. 1985, 90: 3910–3918. https://doi.org/10.1029/JD090iD02p03910
  35. Yu W., Yao T., Thompson L.G., Jouzel J., Zhao H., Xu B., Jing Z., Wang N., Wu G., Ma Y., Gao J., Yang X., Zhang J., Qu D. Temperature signals of ice core and speleothem isotopic records from Asian monsoon region as indicated by precipitation δ18O. Earth and Planetary Science Letters. 2021, 554: 116665. https://doi.org/10.1016/j.epsl.2020.116665

Дополнительные файлы



Creative Commons License
Эта статья доступна по лицензии Creative Commons Attribution 4.0 International License.