Внутрисезонная изменчивость абляции ледника Альдегонда (Шпицберген)

Обложка

Цитировать

Полный текст

Аннотация

Рассмотрена зависимость внутрисезонной изменчивости абляции льда на леднике Альдегонда (Шпицберген) от приземной температуры воздуха и потока коротковолновой радиации. В 2018–2021 гг. абляция льда хорошо согласуется с обоими факторами (r = 0.80–0.98 и 0.71–0.99 соответственно). 2022 год – аномальный с точки зрения нарушения связей абляции и радиации, что объясняется продолжительной волной тепла в Европе.

Об авторах

У. В. Прохорова

Арктический и Антарктический научно-исследовательский институт

Автор, ответственный за переписку.
Email: uvprokhorova@aari.ru
Россия, Санкт-Петербург

А. В. Терехов

Арктический и Антарктический научно-исследовательский институт

Email: uvprokhorova@aari.ru
Россия, Санкт-Петербург

В. Э. Демидов

Арктический и Антарктический научно-исследовательский институт

Email: uvprokhorova@aari.ru
Россия, Санкт-Петербург

С. Р. Веркулич

Арктический и Антарктический научно-исследовательский институт

Email: uvprokhorova@aari.ru
Россия, Санкт-Петербург

Б. В. Иванов

Арктический и Антарктический научно-исследовательский институт; Санкт-Петербургский государственный университет

Email: uvprokhorova@aari.ru
Россия, Санкт-Петербург; Россия, Санкт-Петербург

Список литературы

  1. Borisik A.L., Novikov A.L., Glazovsky A.F., Lavrentiev I.I., Verkulich S.R. Structure and dynamics of Aldegondabreen, Spitsbergen, according to repeated GPR surveys in 1999, 2018 and 2019. Led i Sneg. Ice and Snow. 2021, 61 (1): 26–37 [In Russian]. https://doi.org/10.31857/S2076673421010069
  2. Glyaciologiya Shpicbergena. Glaciology of Svalbard. Moscow: Nauka, 1985: 200 p. [In Russian].
  3. Krenke A.N., Khodakov V.G. On the connection between surface melting of glaciers and air temperature. Materialy Glyatsiologicheskikh Issledovaniy. Data of Glaciological Studies. 1966, 12: 153–164. [In Russian].
  4. Prokhorova U.V., Terekhov A.V., Ivanov B.V., Verkulich S.R. Calculation of the heat balance components of the Aldegonda glacier (Western Spitsbergen) during the ablation period according to the observations of 2019. Kriosfera Zemli. Earth’s Cryosphere. 2021, 25 (3): 50–60. [In Russian].
  5. Prokhorova U., Terekhov, A., Ivanov, B., Demidov, V. Heat balance of a low-elevated Svalbard glacier during the ablation season: A case study of Aldegondabreen. Arctic, Antarctic, and Alpine Research. 2023. 55 (1): 2190057.
  6. Sidorova O.R., Tarasov G.V., Verkulich S.R., Chernov R.A. Surface ablation variability of mountain glaciers of West Spitsbergen. Problemy Arktiki i Antarktiki. Arctic and Antarctic Research. 2019, 65 (4): 438–448. [In Russian].
  7. Terekhov A.V., Tarasov G.V., Sidorova O.R., Demidov V.E., Anisimov M.A., Verkulich S.R. Estimation of mass balance of Aldegondabreen (Spitsbergen) in 2015-2018 based on ARCTICDEM, geodetic and glaciological measurements. Led i Sneg. Ice and Snow. 2020, 60 (2): 192–200. [In Russian].
  8. Chernov R.A., Kudikov A.V., Vshivtseva T.V., Osokin N.I. Estimation of the surface ablation and mass balance of Eustre Grønfjordbreen (Spitsbergen). Led i Sneg. Ice and Snow. 2019, 59 (1): 59–66. [In Russian].
  9. Chernov R.A., Muraviev A.Y. Contemporary changes in the area of glaciers in the western part of the Nordenskjold Land (Svalbard). Led i Sneg. Ice and Snow. 2018, 58 (4): 462–472. [In Russian].
  10. Arnold N.S., Rees W.G., Hodson A.J., Kohler J. Topographic controls on the surface energy balance of a high Arctic valley glacier. Journ. of Geophys. Research: Earth Surface. 2006, 111 (F2).
  11. Bonan D.B., Christian J.E., Christianson K. Influence of North Atlantic climate variability on glacier mass balance in Norway, Sweden and Svalbard. Journ. of Glaciology. 2019, 65 (252): 580–594 https://doi.org/10.1017/jog.2019.35
  12. Copernicus Climate Bulletins. Retrieved from: https://climate.copernicus.eu/climate-bulletins (Last access: 13 February 2023).
  13. Di Capua G., Sparrow S., Kornhuber K., Rousi E., Osprey S., Wallom D., van den Hurk B., Coumou D. Drivers behind the summer 2010 wave train leading to Russian heatwave and Pakistan flooding. Climate and Atmospheric Science. 2021, 4 (1): 55.
  14. Charalampidis C., Fischer A., Kuhn M., Lambrecht A., Mayer C., Thomaidis K., Weber M. Mass-budget anomalies and geometry signals of three Austrian glaciers. Frontiers in earth science. 2018: 218.
  15. Gjelten H.M., Nordli Ø., Isaksen K., Førland E.J., Svia-shchennikov P.N., Wyszynski P., Prokhorova U.V., Przybylak R., Ivanov B.V., Urazgildeeva A.V. Air temperature variations and gradients along the coast and fjords of western Spitsbergen. Polar Research. 2016, 35 (1): 29878.
  16. Grosval’d M.G., Kotlyakov V.M. Present-day glaciers in the USSR and some data on their mass balance. Journ. of Glaciology. 1969, 8 (52): 9–22.
  17. Hagen J.O., Eiken T., Kohler J., Melvold K. Geometry changes on Svalbard glaciers: mass-balance or dynamic response? Annals of Glaciology. 2005, 42: 255–261.
  18. Hagen J.O., Liestøl O. Long-term glacier mass-balance investigations in Svalbard, 1950–88. Annals of Glaciology. 1990, 14: 102–106. https://doi.org/10.3189/S0260305500008351
  19. Hanssen-Bauer I. Climate in Svalbard 2100. A knowledge base for climate adaptation. 2019: 208 p.
  20. Hock R. Glacier melt: a review of processes and their modeling. Progress in physical geography. 2005, 29 (3): 362–391.
  21. IPCC: Summary for Policymakers. In: Global Warming of 1.5°C. An IPCC Special Report on the impacts of global warming of 1.5°C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty. Cambridge: Cambridge University Press, 2018: 3–24.
  22. IPCC, 2021: Summary for Policymakers. In: Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press, 2021.
  23. Isaksen K., Nordli Ø., Førland E.J., Łupikasza E., Eastwood S., Niedźwiedź T. Recent warming on Spitsbergen–Influence of atmospheric circulation and sea ice cover. Journ. of Geophysical Research: Atmospheres. 2016, 121 (20): 11913–11931.
  24. Isaksen K., Nordli Ø., Ivanov B., Køltzow M., Aaboe S., Gjelten1 H., Mezghani A., Eastwood1 S., Førland E., Benestad R., Hanssen‑Bauer I., Brækkan R., Sviashchennikov P., Demin V., Revina A., Karandasheva T. Exceptional warming over the Barents area. Scientific reports. 2022, 12 (1): 1–18.
  25. Lefauconnier B., Hagen J.O. Glaciers and climate in Svalbard: statistical analysis and reconstruction of the Brøggerbreen mass balance for the last 77 years. Annals of Glaciology. 1990, 14: 148–152.
  26. Noël B., Jakobs C.L., Van Pelt W. J.J., Lhermitte S., Wouters B., Kohler J., Hagen J.O., Luks B., Reijmer C.H., van de Berg W.G., van den Broeke, M.R. Low elevation of Svalbard glaciers drives high mass loss variability. Nature Communications. 2020, 11 (1): 4597.
  27. Nordli Ø., Przybylak R., Ogilvie A.E., Isaksen K. Long-term temperature trends and variability on Spitsbergen: the extended Svalbard Airport temperature series, 1898–2012. Polar research. 2014, 33 (1): 21349.
  28. Oerlemans J., Hoogendoorn N.C. Mass-balance gradients and climatic change. Journ. of Glaciology. 1989, 35 (121): 399–405. https://doi.org/10.3189/S0022143000009333
  29. Ohmura A. Physical basis for the temperature-based melt-index method. Journ. of Applied Meteorology and Climatology. 2001, 40 (4): 753–761.
  30. O’Neel S., McNeil C., Sass L.C., Florentine C., Baker E.H., Peitzsch E., McGrath D., Fountain A. G., Fagre D. Reanalysis of the US Geological Survey Benchmark Glaciers: long-term insight into climate forcing of glacier mass balance. Journ. of Glaciology. 2019, 65 (253): 850–866.
  31. Robinson P.J. On the definition of a heat wave. Journ. of Applied Meteorology and Climatology. 2001, 40 (4): 762–775.
  32. Schuler T.V., Kohler J., Elagina N., Hagen J.O.M., Hodson A.J., Jania J.A., Kääb A.M., Luks B., Małecki J., Moholdt G., Pohjola V.A., Sobota I., Van Pelt W.J. Reconciling Svalbard glacier mass balance. Frontiers in Earth Science. 2020: 156.
  33. Terekhov A.V., Verkulich S., Borisik A., Demidov V., Prokho rova U., Romashova K., Anisimov M., Sidorova O., Tarasov G. Mass balance, ice volume, and flow velocity of the Vestre Grønfjordbreen (Svalbard) from 2013/14 to 2019/20. Arctic, Antarctic, and Alpine Research. 2022, 54 (1): 584–602. https://doi.org/10.1080/15230430.2022.2150122
  34. Vincent C., Fischer A., Mayer C., Bauder A., Galos S.P., Funk M., Thibert E., Six D., Braun L., Huss M. Common climatic signal from glaciers in the European Alps over the last 50 years. Geophysical Research Letters. 2017, 44 (3): 1376–1383.
  35. Zou X., Ding M., Sun W., Yang D., Liu W., Huai B., Jin S., Xiao C. The surface energy balance of Austre Lovénbreen, Svalbard, during the ablation period in 2014. Polar Research. 2021, 40: 5318.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML
2.

3.

Скачать (78KB)
4.

Скачать (50KB)
5.

Скачать (276KB)


Creative Commons License
Эта статья доступна по лицензии Creative Commons Attribution 4.0 International License.