Prospects for researches in the prevention of healthcare-associated infections

  • Authors: Tutelyan A.V1,2,3, Pisarev V.M1,2,4, Gaponov A.M1,2, Akimkin V.G1,3,5
  • Affiliations:
    1. Central Research Institute of Epidemiology, Russian Inspectorate for the Protection of Consumer Rights and Human Welfare
    2. Dmitry Rogachev Federal Research-and-Clinical Center for Pediatric Hematology, Oncology, and Immunology, Ministry of Health of Russia
    3. I.M. Sechenov First Moscow State Medical University, Ministry of Health of Russia
    4. V.A. Negovsky Research Institute of General Reanimatology, Russian Academy of Medical Sciences
    5. Research Institute of Disinfectology, Russian Inspectorate for the Protection of Consumer Rights and Human Welfare
  • Issue: No 2 (2014)
  • Pages: 45-51
  • Section: Articles
  • URL: https://journals.eco-vector.com/2226-6976/article/view/277471
  • ID: 277471

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Despite the excellent sanitary and epidemiological situation and respective architecture planning decisions, the incidence of healthcare-associated infections (HCAI) remains rather high in the healthcare facilities of many countries of the world. This fact is attributable to that, besides socially mediated factors, there are relatively socially independent ones, such as the selection of highly virulent strains that are multidrug-resistant to physical and chemical factors: decreased defenses and varying susceptibility to therapeutic and preventive measures in the patients. The paper discusses that there are forms of microorganisms (persistent cells) characterized by their drastically reduced metabolic and proliferative activities, which results in their insusceptibility to antimicrobial drugs, which has derived the name of antibiotic tolerance (AT) in the literature. Unlike antibiotic resistance, AT in persistent cells is unassociated with genetic changes in microorganisms and characterized by the possibility to recover antibiotic susceptibility. To investigate the influence of innate and adaptive immunity and some peptide regulatory molecules (antibacterial peptides and neuromediators) on the formation of persistent cells of the opportunistic flora is a new scientific and methodical approach. To study the phenotypic biomarkers of an immune response, which are of informative value for predicting the development of a generalized infectious process, the so-called immunophenomics is of interest in the prevention of HCAI. Biomarkers could also find application at the genetic platform, by using the mass analysis of the variant genes regulating immune reactions to an infectious agent. The determination of the profile of genetic polymorphism of candidate markers together with the quantitative characteristics of immunophenotypical markers may methodically make it possible to create biomarker panels for personalized healthcare. An inflammatory response to infectious pathogen molecules leads to a change in the production of innate and adaptive immunity factors, the activation of which is of pathogenetic value in the poor outcome of an infectious process. By using the abundant evidence available in the literature and their results as an example, the authors show that it is necessary to stratify patients by the quantitative parameters of the immune system as biomarkers for a poor outcome to personalize treatment and to more carefully use immunomodulators, specifically when superinfection is probable.

Full Text

Restricted Access

About the authors

A. V Tutelyan

Central Research Institute of Epidemiology, Russian Inspectorate for the Protection of Consumer Rights and Human Welfare; Dmitry Rogachev Federal Research-and-Clinical Center for Pediatric Hematology, Oncology, and Immunology, Ministry of Health of Russia; I.M. Sechenov First Moscow State Medical University, Ministry of Health of Russia

Email: bio-tav@yandex.ru

V. M Pisarev

Central Research Institute of Epidemiology, Russian Inspectorate for the Protection of Consumer Rights and Human Welfare; Dmitry Rogachev Federal Research-and-Clinical Center for Pediatric Hematology, Oncology, and Immunology, Ministry of Health of Russia; V.A. Negovsky Research Institute of General Reanimatology, Russian Academy of Medical Sciences

Email: vpisarev@gmail.com

A. M Gaponov

Central Research Institute of Epidemiology, Russian Inspectorate for the Protection of Consumer Rights and Human Welfare; Dmitry Rogachev Federal Research-and-Clinical Center for Pediatric Hematology, Oncology, and Immunology, Ministry of Health of Russia

Email: zorba@yandex.ru

V. G Akimkin

Central Research Institute of Epidemiology, Russian Inspectorate for the Protection of Consumer Rights and Human Welfare; I.M. Sechenov First Moscow State Medical University, Ministry of Health of Russia; Research Institute of Disinfectology, Russian Inspectorate for the Protection of Consumer Rights and Human Welfare

Email: vgakimkin@yandex.ru

References

  1. Klevens R.M., Edwards J.R., Richards C.L., Horan T.C., Gaynes R.P., Pollock D.A., Cardo D.M. Estimating healthcare-associated infections and deaths in U.S. hospitals 2002. Public Health Rep. 2007; 122: 160-166.
  2. Centers for Disease Control and Prevention. National Nosocomial Infections Surveillance (NNIS) System Report Data Summary from Jan 1992 through June 2004, issued Oct 2004. Am. J. Infect. Control. 2004; 32: 470-485.
  3. Тарлыков И.И., Рубан Г.И. Здоровье нации. Эпидемическая безопасность больных при оказании медицинской помощи (доклад). Тезисы Международного конгресса по профилактике инфекций, связанных с оказанием медицинской помощи. М., 2013; 3-7.
  4. Rosenthal V.D., Lynch P., Jarvis W.R., Khader I.A., Richtmann R., Jaballah N.B. et al. International Nosocomial Infection Control Consortium members. Socioeconomic impact on deviceassociated infections in limited-resource neonatal intensive care units: findings of the INICC. Infection 2011; 39(5): 439-450.
  5. Rosenthal V.D., Jarvis W.R., Jamulitrat S., Silva C.P., Ramachandran B., Duenas L. et al. International Nosocomial Infection Control Members. Socioeconomic impact on deviceassociated infections in pediatric intensive care units of 16 limited-resource countries: international Nosocomial Infection Control Consortium findings. Pediatr. Crit. Care Med. 2012; 13(4): 399- 406.
  6. Rosenthal V.D., Bijie H., Maki D.G., Mehta Y., Apisarnthanarak A., Medeiros E.A. et al. INICC members. International Nosocomial Infection Control Consortium (INICC) report, data summary of 36 countries, for 2004-2009. Am. J. Infect. Control. 2012; 40(5): 396-407.
  7. Rosenthal V.D., Maki D.G., Jamulitrat S., Medeiros E.A., Todi S.K., Gomez D.Y. et al. INICC Members. International Nosocomial Infection Control Consortium (INICC) report, data summary for 2003-2008, issued June 2009. Am. J. Infect. Control. 2010; 38(2): 95-104.
  8. Madani N., Rosenthal V.D., Dendane T., Abidi K., Zeggwagh A.A., Abouqal R. Health-care associated infections rates, length of stay, and bacterial resistance in an intensive care unit of Morocco: findings of the International Nosocomial Infection Control Consortium (INICC). Int. Arch. Med. 2009; 2(1): 29.
  9. Rosenthal V.D., Maki D.G., Rodrigues C., Alvarez-Moreno C., Leblebicioglu H., Sobreyra-Oropeza M. et al. International Nosocomial Infection Control Consortium Investigators. Impact of International Nosocomial Infection Control Consortium (INICC) strategy on central line-associated bloodstream infection rates in the intensive care units of 15 developing countries. Infect. Control. Hosp. Epidemiol. 2010; 31(12): 1264-1272.
  10. Покровский В.И., Акимкин В.Г., Брико Н.И., Брусина Е.Б., Зуева Л.П., Ковалишена О.В. и др. Национальная концепция профилактики инфекций, связанных с оказанием медицинской помощи. Н. Новгород, 2012. 84 с.
  11. Матвеева А.И. Эпидемиологические особенности гнойновоспалительных заболеваний у больных раком легкого. Казанский мед. журн. 2005; 6: 477-479.
  12. Румянцев А.Г., Масчан А.А., Самочатова Е.В. Сопроводительная терапия и контроль инфекций при гематологических и онкологических заболеваниях. М.: Медпрактика-М, 2009. 447 с.
  13. Medscape/CDC Expert Commentaries, 2013. http://www.cdc.gov/HAI/organisms/cdiff/cdiff_infect.html
  14. Roberts R.R., Hota B., Ahmad I., Scott R.D. II, Foster S.D., Abbasi F. et al. Hospital and societal costs of antimicrobial-resistant infections in a Chicago teaching hospital: implications for antibiotic stewardship. Clin Infect Dis. 2009; 49(8): 1175-1184.
  15. Lewis K., Spoering A., Kaldala N., Keren I., Shah D. Persisters: specialized cells responsible for biofilm tolerance to antimicrobial agents. In: Pace J., Rupp M.P., Finch R.G., eds. Biofilms, Infection and Antimicrobial therepy. Boca Raton: Taylor & Francis, 2005; 241-256.
  16. Lewis K. Persister cells, dormancy and infectious disease. Nat. Rev. Microbiol. 2007; 5: 48-56.
  17. Lewis K. Persister cells. An. Rev. Microbiol. 2010; 64: 357-372.
  18. Эль-Регистан Г.И., Мулюкин А.Л., Николаев Ю.А., Сузина Н.Е., Гальченко В.Ф., Дуда В.И. Адаптогенные функции внеклеточных ауторегуляторов микроорганизмов. Микробиология 2006; 75(4): 446-456.
  19. Kaprelyants A.S., Gottshal J.C., Kell D.B. Dormancy in nonsporulating bacteria. FEMS Microbiol. Rev. 1993; 104: 271- 286.
  20. Shleeva M., Bagramyan K., Telkov M.V., Mukamolova G.V., Young M., Kell D.B., Kaprelyants A.S. Formation and resuscitation of «non-culturable» cells of Rhodococcus rhodochrous and Mycobacterium tuberculosis in prolonged stationary phase. Microbiology 2002; 148: 1581-1591.
  21. Fauvart M., Verstraeten N., Dombrecht B., Venmans R., Beullens S., Heusdens C. et al. Rhizobium etli HrpW is a pectin-degrading enzyme and differs from phytopathogenic homologues in enzymically crucial tryptophan and glycine residues. Microbiology 2009; 155: 3045-3054.
  22. Jonjić S., Polić B., Krmpotić A. Viral inhibitors of NKG2D ligands: friends or foes of immune surveillance? Eur. J. Immunol. 2008; 38(11): 2952-2956.
  23. Eagle R.A., Jafferji I., Barrow A.D. Beyond stressed self: evidence for NKG2D ligand expression on healthy cells. Curr. Immunol. Rev. 2009; 5(1): 22-34.
  24. Stern-Ginossar N., Mandelboim O. An integrated view of the regulation of NKG2D ligands. Immunology 2009; 128(1): 1-6.
  25. Hayashi T., Imai K., Morishita Y., Hayashi I., Kusunoki Y., Nakachi K. Identification of the NKG2D haplotypes associated with natural cytotoxic activity of peripheral blood lymphocytes and cancer immunosurveillance. Cancer Res. 2006; 66(1): 563-570.
  26. Nobre V., Harbarth S., Graf J.D., Rohner P., Pugin J. Use of procalcitonin to shorten antibiotic treatment duration in septic patients: a randomized trial. Am. J. Respir. Crit. Care Med. 2008, 177: 498-505.
  27. Nuutila J. The novel applications of the quantitative analysis of neutrophil cell surface FcgammaRI (CD64) to the diagnosis of infectious and inflammatory diseases. Curr. Opin. Infect. Dis. 2010; 23(3): 268-274.
  28. Guignant C., Lepape A., Huang X., Kherouf H., Denis L., Poitevin F. et al. Programmed death-1 levels correlate with increased mortality, nosocomial infection and immune dysfunctions in septic shock patients. Crit. Care. 2011; 15(2): R99.
  29. Maghraby S.M., Moneer M.M., Ismail M.M., Shalaby L.M., El-Mahallawy H.A. The diagnostic value of C-reactive protein, interleukin-8, and monocyte chemo tactic protein in risk stratification of febrile neutropenic children with hematologic malignancies. J. Pediatr. Hematol. Oncol. 2007; 29: 131-136.
  30. Heper Y., Akalin E.H., Mistik R., Akgoz S., Tore O., Goral G. et al. Evaluation of serum C-reactive protein, procalcitonin, tumor necrosis factor alpha, and interleukin-10 levels as diagnostic and prognostic parameters in patients with community-acquired sepsis, severe sepsis, and septic shock. Eur. J. Clin. Microbiol. Infect. Dis. 2006; 25: 481-491.
  31. Ng P.C., Li K., Leung T.F., Wong R.P., Li G., Chui K.M. et al. Early prediction of sepsis-induced disseminated intravascular coagulation with interleukin-10, interleukin-6, and RANTES in preterm infants. Clin. Chem. 2006; 52(6): 1181-1189.
  32. Ng P.C., Li K., Chui K.M., Leung T.F., Wong R.P., Chu W.C. et al. IP-10 is an early diagnostic marker for identification of late-onset bacterial infection in preterm infants. Pediatr. Res. 2007; 61: 93-98.
  33. Gunderson K.L., Kuhn K.M., Steemers F.J., Ng P., Murray S.S., Shen R. Whole-genome genotyping of haplotype tag single nucleotide polymorphisms. Pharmacogenomics 2006; 7(4): 641- 648.
  34. Ng P.C., Kirkness E.F. Whole genome sequencing. Methods Mol. Biol. 2010; 628: 215-226.
  35. Zubtsova Zh.I., Zubtsov D.A., Savvateeva E.N., Stomakhina A.A., Chechetkina V.R., Zasedateleva A.S., Yu A. Hydrogel-based protein and oligonucleotide microchips on metal-coated surfaces: enhancement of fluorescence and optimization of immunoassay. J. Biotechnology 2009; 144: 151-159.
  36. Тутельян А.В., Писарев В.М., Акимкин В.Г., Брико Н.И., Брусина Е.Б., Зуева Л.П., Покровский В.И. Оптимизация мероприятий по профилактике септических осложнений инфекций, связанных с оказанием медицинской помощи на основе поиска биомаркеров клеток иммунной системы. Эпидемиол. и инфекц. болезни. Актуал. вопр. 2012; 2: 52-57.
  37. Sun K., Metzger D.W. Inhibition of pulmonary antibacterial defense by interferon-γ during recovery from influenza infection. Nat. Med. 2008; 14: 558-564.
  38. Morens D.M., Taubenberger J.K., Fauci A.S. Predominant role of bacterial pneumonia as a cause of death in pandemic influenza: implications for pandemic influenza preparedness. J. Infect. Dis. 2008; 198(7): 962-970.
  39. Ковтун Т.А. Клинико-иммунологическая характеристика и терапия пневмоний у детей. Автореф. канд. мед. наук. М., 2013.
  40. Латышева Е.А., Латышева Т.В. Применение внутривенных иммуноглобулинов в интенсивной терапии. Общая реаниматология 2012; VIII(3): 45-50.
  41. Мороз В.В., Смелая Т.В., Голубев А.М., Сальникова Л.Е. Генетика и медицина критических состояний: от теории к практике. Общая реаниматология 2012; VIII(4): 5-12.
  42. Сальникова Л.Е., Смелая Т.В., Мороз В.В., Голубев А.М., Лаптева Н.Ш., Порошенко Г.Г., Рубанович А.В. Генетическая предрасположенность к развитию острой внебольничной пневмонии. Общая реаниматология 2010; VI(1): 5-10.
  43. Егорова И.Н., Власенко А.В., Мороз В.В., Яковлев В.Н., Алексеев В.Г. Вентилятор-ассоциированная пневмония: диагностика, профилактика, лечение (современное состояние вопроса). Общая реаниматология 2010; VI(1): 79-87.
  44. Голубев А.М., Смелая Т.В., Мороз В.В., Попов А.А., Толбатов А.А., Медунецкая С.В. Внебольничная и нозокомиальная пневмония: клинико-морфологические особенности. Общая реаниматология 2010; VI(3): 5-14.
  45. Salnikova L.E., Smelaya T.V., Golubev A.M., Rubanovich A.V., Moroz V.V. CYP1A1, GCLC, AGT, AGTR1 gene-gene interactions in community-acquired pneumonia pulmonary complications. Mol. Biol. Rep. 2013; 40(11): 6163-6176.
  46. Salnikova L.E., Smelaya T.V., Moroz V.V., Golubev A.M., Rubanovich A.V. Functional polymorphisms in the CYP1A1, ACE, and IL-6 genes contribute to susceptibility to community-acquired and nosocomial pneumonia. Int. J. Infect. Dis. 2013; 17(6): є433-є442.
  47. Salnikova L.E., Smelaya T.V., Moroz V.V., Golubev A.M., Rubanovich A.V. Host genetic risk factors for community-acquired pneumonia. Gene 2013; 518(2): 449-456.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2014 Bionika Media

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies