CAUSES OF IMMUNOSUPPRESSION IN THE DEVELOPMENT OF NEONATAL SEPSIS


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅或者付费存取

详细

The literature review analyzes the causes of immunosuppression in neonatal babies with sepsis. It shows the important role of both innate and adaptive immunity factors in the protection of infants against infections in neonatality. The level of expression and polymorphism of Toll-like receptors is noted to be of importance in the development of grampositive and gram-negative neonatal sepsis. The mechanisms of an immune response in neonatal sepsis, which lead to immunosuppression, are considered. Apoptosis of immunocompetent cells is noted to play an important role in the development of sepsis-induced immunosuppression.

全文:

受限制的访问

作者简介

Khalit Khaertynov

Kazan State Medical University

Email: khalit65@rambler.ru

V. ANOKHIN

Kazan State Medical University

Email: anokhin56@mail.ru

S. BOICHUK

Kazan State Medical University

Email: boichuksergei@mail.ru

A. RIZVANOV

Kazan (Volga Region) Federal University

Email: rizvanov@gmail.com

参考

  1. Lawn J.E., Cousens S., Zupan J.T. Lancet Neonatal Survival Steering. 4 million neonatal deaths: when? Where? Why? Lancet 2005; 365(9462): 891-900.
  2. Wynn J.L., Wong H.R. Pathophysiology and treatment of septic shock in neonates. Clin Perinatol. 2010; 37(2): 439-479.
  3. Атауллаханов Р.И., Гинцбург А.Л. Иммунитет и инфекция: динамичное противостояние живых систем. Педиатрия 2005; (4): 47-61.
  4. Самсыгина Г.А. О предрасполагающих факторах и факторах риска развития неонатального сепсиса и о современных подходах его лечения. Педиатрия 2012; 91 (3): 32-37.
  5. Hotchkiss R.S., Karl I.E. The pathophysiology and treatment of sepsis. N. Engl. J. Med. 2003; 348(2): 138-150.
  6. Белобородов В.Б. Иммунопатология тяжелого сепсиса и возможности ее коррекции. Вестник интенсивной терапии 2010; (4): 3-8.
  7. Hotchkiss R.S., Monneret G., Payen D. Immunosuppression in sepsis: novel understanding of the disorder and a new therapeutic approach. Lancet Infect. Dis. 2013; 13: 260-268.
  8. Cuenca A.G., Wynn J.L., Moldawer L.L., Levy O. l. Role of innate immunity in neonatal infection. Am. J. Perinatol. 2013; 30(2): 105-112.
  9. Шабалов Н.П. Неонатология. В 2-х т. М.: МЕДпресс-информ, 2009; Т. 2. 768 с.
  10. Melville J.M., Moss T.J.M. The immune consequences of preterm birth. Front. Neurosci. 2013; 7: 79. doi: 10.3389/ fnins.2013.00079
  11. Tissieres P., Ochoda A., Dunn-Siegrist I., Drifte G., Morales M., Pfister R. et al. Innate immune deficiency of extremely premature neonates can be reversed by interferon-γ. PLOS ONE 2012; 7(3): е32863.
  12. Bektas S., Goetze B., Speer C.P. Decreased adherence, chemotaxis and phagocytic activities of neutrophils from preterm neonates. Acta Pediatr. Scand. 1990; 79: 1031-1038.
  13. Filias A., Theodorou G.L., Mouzopoulou S., Varvarigou A., Mantagos S., Karakantza М. Phagocytic ability of neutrophils and monocytes in neonates. BMC Pediatrics 2011; 11: 29.
  14. Dzwonek A.B., Neth O.W., Thiebaut R., Gulcynska E, Chilton M., Hellwig T. et al. The role of mannose-binding lectin in susceptibility to infection in preterm neonates. Pediatr. Res. 2008; 63(6): 680-685.
  15. Frakking F.N., Brouwer N., van Eijkelenburg N.K., Merkus M.P., Kuijpers T.W., Offringa M. et al. Low mannose-binding lectin (MBL) levels in neonates with pneumonia and sepsis. Clin. Exp. Immunol. 2007; 150(2): 255-262.
  16. Perez A., Bellon J.M., Gurbindo M. D., Munoz-Fernandez M. A. Impairment of stimulation ability of very preterm neonatal monocytes in response to lipopolysaccharide. Hum. Immunol. 2010; 71: 151-157.
  17. van den Berg J.P., Westerbeek E.A.M., van der Klis F.R.M., Berbers G.A.M., van Elburg R.M. Transplacental transport of IgG antibodies to preterm infants: a review of the literature. Early Hum. 2011; 87: 67-72.
  18. Jenson H.B., Pollock B.H. Meta-analyses of the effectiveness of intravenous immune globulin for prevention and treatment of neonatal sepsis. Pediatrics 1997; 99: e2.
  19. Меджитов Р. Врождённый иммунитет. Казанский медицинский журнал 2004: 3: 161-169.
  20. Medzitov R. Toll-like receptors and innate immunity. Nature Rev. Immunol. 2001; 1: 136-144.
  21. Chang Zl. Important aspects of Toll-like receptors, ligands and their signaling pathways. Inflamm. Res. 2010; 59(10): 791-808.
  22. Gay N.J., Gangloff M. Structure and function of Toll receptors and their ligands. Ann. Rev. Biochem. 2007; 76: 141-165.
  23. Miyake K. Roles of assessor molecules in microbial recognition by Toll-like receptors. J. Endotoxin Res. 2006; 12(4): 195-204.
  24. Wittebole X., Castanares-Zapatero D., Laterre P.F. Toll-like receptor 4 modulation as a strategy to treat sepsis. Mediators of Inflammation, 2010. doi: 10.1155/2010/5 68396.
  25. Zhang J.P., Yang C.C., Changes Y. Changes and clinical significance of Toll-like receptor 2 and 4 expression in neonatal infections. Zhonghua Er Ke Za Zhi 2007; 45(2): 130-133.
  26. Forster-Waldi E.K., Sadeghi D., Tamandl B., Gerhold B., Hallwirth U., Rohrmeister K. et al. Monocyte TLR4 expression and LPS-induced cytokine production increase during gestational aging. J. Pediatr. Res. 2005; 58: 121-124.
  27. Sadeghi K., Berger A., Langgartner M., Prusa A.R., Hayde M., Herkner K. et al. Immaturity of infection control in preterm and term newborns is associated with impaired tolllike receptor signaling. J. Infect. Dis. 2007; 195(2): 296-302.
  28. Jabandziev P., Smerek M., Michalek J., Fedora M., Kosinova L., Hubacek J.A. et al. Multiple gene-to-gene interactions in children with sepsis: a combination of five gene variants predicts outcome of life-threatening sepsis. Critical Care 2014; 18: R1.
  29. Толстопятова М.А., Буслаева Г.А., Козлов И.Г. Роль рецепторов врожденного иммунитета в развитии инфекционной патологии у новорожденных детей. Педиатрия 2009; 87(1): 115-120.
  30. Ahrens P., Kattner E., Kohler B., Hartel C., Seidenberg J., Segerer H. et al. Mutation of genes involved in the innate immune system as predictors of sepsis in very low birth weight infants. J. Pediatr. Res. 2004; 55: 652-656.
  31. Faber J., Meyer C.U., Gemmer C., Russo A., Finn A., Murdoch C. et al. Human toll-like receptors 4 mutations are associated with susceptipility to invasive meningococcal disease in infancy. J. Pediatr. Infect. 2006; 25(1): 80-81.
  32. Picard C., von Bernuth H., Ghandil P., Chrabieh M., Levy O., Arkwright P.D. et al. Clinical features and outcome of patients with IRAK-4 and MyD88 deficiency. Medicine (Baltimore). 2010; 89(6): 403-425.
  33. Walker J.C., Smolders M.A., Gemen E.F., Antonius T.A., Leuvenink J., de Vries E. et al. Development of lymphocytes subpopulations in preterm infants. Scand. J. Immunol. 2011; 73: 53-58.
  34. Elmore S. Apoptosis: a review of programmed cell death. Toxicologic Pathology 2007; 35(4): 495-516.
  35. Milot E., Fotouhi-Ardakani N., Filep J.G. Myeloid nuclear differentiation antigen, neutrophil apoptosis and sepsis. Front. Immunol. 2012; 3: 397.
  36. Hacker G. The morphology of apoptosis. Cell Tissue Res. 2000; 301: 5-17.
  37. Boomer J.S., To K., Chang K.C. Immunosuppression in patients who die of sepsis and multiple organ failure. JAMA 2011; 306(23): 2594-2605.
  38. Hotchkiss R.S., Tinsley K.W., Swanson P.E., Schmieg R.E., Hui J.J., Chang K.C. et al. Sepsis-induced apoptosis causes progressive profound depletion of B and CD4+ T lymphocytes in humans. J. Immunol. 2001; 166: 6952-6963.
  39. Hotchkiss R.S., Tinsley K.W., Swanson P.E., Grayson M.H., Osborne D.F., Wagner T.H. et al. Depletion of dendritic cells, but not macrophages, in patients with sepsis. J. Immunol. 2002; 168: 2493-500.
  40. Biswas S.K., Lopez-Collazo E. Endotoxin tolerance: new mechanisms, molecules and clinical significance. Trends Immunol. 2009; 30: 475-487
  41. Pastille, E., Didovic S., Brauckmann D., Rani M., Agrawal H. et al. Modulation of dendritic cell differentiation in the bone marrow mediates sustained immunosuppression after polymicrobial sepsis. J. Immunol. 2001; 186: 977-986.
  42. Landelle C., Lepape A., Voirin N., Tognet E., Venet F., Bohe J. et al. Low monocyte human leukocyte antigen-DR is independently associated with nosocomial infections after septic shock. Intensive Care Med. 2010; 36: 1859-1866.
  43. Felmet K.A., Hall M.W., Clark R.S., Jaffe R., Carcillo J.A. et al. Prolonged lymphopenia, lymphoid depletion, and hypoprolactinemia in children with nosocomial sepsis and multiple organ failure. J. Immunol. 2005; 174: 3765-3772.
  44. Hotchkiss R.S., Swanson P.E., Freeman B.D., Tinsley K.W., Cobb J.P., Matuschak G.M. et al. Apoptotic cell death in patients with sepsis, shock, and multiple organ dysfunction. Crit. Care Med. 1999; 27: 1230-1251.
  45. Toti P., De Felice C., Occhini R., Schuerfeld K., Stumpo M., Epistolato M.C. et al. Spleen depletion in neonatal sepsis and chorioamnionitis. Am. J. Clin. Pathol. 2004; 122: 765-771.
  46. Hotchkiss R.S., Schmieg R.E., Swanson P.E., Freeman B.D., Tinsley K.W., Cobb J.P. et al. Rapid onset of intestinal epithelial and lymphocyte apoptotic cell death in patients with trauma and shock. Crit. Care Med. 2000; 28: 3207-3217.
  47. Hotchkiss R.S., Monneret G., Payen D. Sepsis-induced immunosuppression: from cellular dysfunctions to immunotherapy. Immunology 2013; 13: 862-874.
  48. Kasten K.R., Tschöp J., Adediran S.G., Hildeman D.A., Caldwell C.C. T cells are potent early mediators of the host response to sepsis. Shock 2010; 34(4): 327-336.
  49. Широкова А.В. Апоптоз. Сигнальные пути и изменение водного и ионного баланса клетки. Цитология 2007; 49(5): 385-394.
  50. Coopersmith C.M., Stromberg P.E., Dunne W.M., Davis C.G., Amiot D.M., Buchman T.G. et al. Inhibition of intestinal epithelial apoptosis and survival in a murine model of pneumonia-induced sepsis. JAMA 2002; 287: 1716-1721.

补充文件

附件文件
动作
1. JATS XML
##common.cookie##