ESTIMATION OF THE GLOBAL MOVEMENT OF INFECTIOUS DISEASES, BY USING THE TECHNIQUES OF MOLECULAR BIOLOGY

  • Authors: SAVILOV E.D1, SINKOV V.V2, OGARKOV О.В3,4
  • Affiliations:
    1. Institute of Epidemiology and Microbiology, Research Center of Family Health and Human Reproduction, Siberian Branch, RussianAcademy of Medical Sciences, Irkutsk
    2. Irkutsk Regional Clinical Consulting and Diagnostic Center
    3. Irkutsk Regional Tuberculosis Dispensary
    4. Irkutsk Institute for Advanced Training of Physicians, Russian Agency for Health Care
  • Issue: No 3 (2011)
  • Pages: 11
  • Section: Articles
  • URL: https://journals.eco-vector.com/2226-6976/article/view/287281
  • ID: 287281

Cite item

Full Text

Abstract

The paper provides a rationale for the importance of using the techniques of molecular biology to estimate the global movement of some types of infectious diseases. This proposition is analyzed using tuberculosis infection as an example. The epidemic Mycobacterium tuberculosis genotypes that are widely distributed in Russia, Estonia, Latvia, and some other countries of Europe and Asia are identified. The findings suggest that there was a one-stage and burst distribution of the M. tuberculosis Beijing genotype in the former Soviet Union countries in the first half of the 20th century.

Full Text

Restricted Access

About the authors

E. D SAVILOV

Institute of Epidemiology and Microbiology, Research Center of Family Health and Human Reproduction, Siberian Branch, RussianAcademy of Medical Sciences, Irkutsk

Email: savilov47@gmail.com

V. V SINKOV

Irkutsk Regional Clinical Consulting and Diagnostic Center

О. В OGARKOV

Irkutsk Regional Tuberculosis Dispensary; Irkutsk Institute for Advanced Training of Physicians, Russian Agency for Health Care

References

  1. Малеев В.В. Проблемы инфекционной патологии на современном этапе. Эпидемиол. и инфекц. бол. 2006; 4: 11-14.
  2. Брико Н.И., Покровский В.И. Глобализация и эпидемический процесс. Эпидемиол. и инфекц. бол. 2010; 4: 4-10.
  3. Van Soolingen D., Qian L., de Haas P. E. et al. Predominance of a single genotype of Mycobacterium tuberculosis in countries of east Asia. J. Clin. Microbiol. 1995; 33: 3234-3238.
  4. Савилов Е.Д., Синьков В.В., Огарков О.Б. Пекинский генотип М. tuberculosis. Эпидемиол. и инфекц. бол. 2010; 4: 50-53.
  5. Мокроусов И. В. Генетическое разнообразие и эволюция Mycobacterium tuberculosis: Автореф. дис... д-ра биол. наук: 03.00.07. СПб.: Санкт-Петербургский НИИ эпидемиологии и микробиологии им. Пастера, 2009.
  6. Glynn J.R., Whiteley J., Bifani P. J. et al. Worldwide occurrence of Beijing/W strains of Mycobacterium tuberculosis: a systematic review. Tmerg. Infect. Dis. 2002; 8(8): 843-849.
  7. Lee S.W., Jeon K., Kim K.H., Min К H. Multidrug-resistant pulmonary tuberculosis among young Korean soldiers in a communal setting. J. Korean Med. Sci. 2009; 24(4): 592-595.URF: http://dx.doi.Org/10.3346/jkms.2009.24.4.592
  8. Shi L., Jian Fan X., Lin Wan К Preliminary study on genotyping of Mycobacterium tuberculosis strains isolated in Tibet with multiple locus variable numbers of tandem repeats. Zhonghua Liu Xing Bing Xue Za Zhi 2007; 28 (5): 477-481.
  9. Takashima T., Iwamoto T. New era in molecular epidemiology of tuberculosis in Japan. Kekkaku 2006; 81(11): 693-707.
  10. Балабанова Я.М., Николаевский В.В., Радди М. Преобладание штаммов Mycobacterium tuberculosis семейства Beijing и факторы риска их трансмиссии в Самарской области. Пробл. туберкулеза и болезней легких 2006; 2: 31-37.
  11. Баранов А. А., Марьяндышев А. О., Маркелов Ю. М. И др. Молекулярная эпидемиология туберкулеза в четырех административных территориях Баренц-региона Российской Федерации. Экология человека 2007; 7: 34-38.
  12. Огарков О.Б., Медведева Т.В., Zozio T. Молекулярное типирование штаммов микобактерий туберкулеза в Иркутской области (Восточная Сибирь) в 2000-2005 гг. Молекул. мед. 2007; 2: 33-38.
  13. Cox H.S., Kubica T., Doshetov D. et al. The Beijing genotype and drug resistant tuberculosis in the Aral Sea region of Central Asia.Respir. Res. 2005; 6: 134. http://dx.doi. org/10.1186/1465-9921-6-134
  14. Hillemann D., Kubica T., Agzamova R. et al. Rifampicin and isoniazid resistance mutations in Mycobacterium tuberculosis strains isolated from patients in Kazakhstan. Int. J. Tuberc. Lung. Dis. 2005; 9(10): 1161-1167.
  15. Kovalev S.Y., Kamaev E.Y., Kravchenko M.A. et al. Genetic analysis of mycobacterium tuberculosis strains isolated in Ural region, Russian Federation, by MIRU-VNTR genotyping. Int. J. Tuberc. Lung. Dis. 2005; 9(7): 746-752.
  16. Mokrousov I., Narvskaya O., Otten T. et al. Phylogenetic reconstruction within Mycobacterium tuberculosis Beijing genotype in northwestern Russia. Res. Microbiol. 2002; 153 (10): 629 - 63 7.
  17. Mokrousov I., Valcheva V., Sovhozova N. et al. Penitentiary population of Mycobacterium tuberculosis in Kyrgyzstan: exceptionally high prevalence of the Beijing genotype and its Russia-specific subtype. Infect. Genet. Evol. 2009; 9(6): 1400-1405. http://dx.doi.org/10.1016/j. meegid.2009.07.007.
  18. Mokrousov I., Ly H.M., Otten T. et al. Origin and primary dispersal of the Mycobacterium tuberculosis Beijing genotype: clues from human phylogeography. Genome Res. 2005; 15: 1357-1364.
  19. Синьков В.В., Савилов Е.Д., Огарков О.Б Эпидемиология туберкулеза в России: эпидемиологические и исторические доказательства в пользу сценария распространения пекинского генотипа M. tuberculosis в ХХ веке. Эпидемиол. и вакцинопрофилактика 2010; 6: 23-28.
  20. Liens B., Sola C., Brudey K., Rastogi N. A web-site for a global database of My-cobacterium tuberculosis complex spoligotypes and MIRU-VNTRs (SITVIT): 6th Annu. Congr. Eur. Soc. Mycobacteriol. Istambul, Turkey. 26-29 June 2005.
  21. Tang C., Reyes J. F., Luciani F. et al. SpolTools: online utilities for analyz ing spoligotypes of the Mycobacterium tuberculosis complex. Bioinformat ics 2008; 24(20): 2414-2415. URL: http://dx.doi.org/10.1093/bioinformatics/ btn434.
  22. Tanaka M. M., Francis A. R. Detecting emerging strains of tuberculosis by using spoligotypes. Proc. Nat. Acad. Sci. USA 2006; 103 (41): 15266-15271. URL: http://dx.doi. org/10.1073/pnas.0603130103.
  23. Reyes J. F., Francis A. R., Tanaka M. M. Models of deletion for visualizing bacteial variation: an application to tuberculosis spoligotypes. Brit. Med. Clin. Bioinformatics 2008; 9: 496. URL: http://dx.doi.org/10.1186/ 1471-2105-9-496.
  24. Brudey K., Driscoll J. R., Rigouts L. et al. Mycobacterium tuberculosis com-plex genetic diversity: mining the fourth international spoligotyping database (SpolDB4) for classification, population genetics and epidemiology. Brit. Med. Clin. Microbiol. 2006; 6: 23. URL: http://dx.doi. org/10.1186/1471-2180-6-23
  25. Wirth T., Hildebrand F., Allix-Beguec C. et al. Origin, spread and demography of the Mycobacterium tuberculosis complex. PLoS Pathog. 2008;4(9): e1000160. URL: http:// dx.doi.org/10.1371/journal.ppat.1000160.
  26. Devaux I., Kremer K., Heersma H., Soolingen D.V. Clusters of multidrug-resistant Mycobacterium tuberculosis cases, Europe. Emerg. Infect. Dis. 2009; 15(7): 1052-1060.
  27. Eker B., Ortmann J., Migliori G.B. et al. Multidrug- and extensively drug-resistant tuberculosis, Germany. Emerg. Infect. Dis. 2008; 14(11): 1700-1706.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2011 Bionika Media

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies