Impact of the organism’s genetic traits on the development of secondary and concomitant diseases in patients with HIV infection


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

The review gives the data of clinical trials investigating the impact of genetic sequences in HIV-infected patients on the development of pathological conditions, secondary and concomitant diseases (mycobacterial, herpesvirus, cytomegalovirus, and HPV infections, impaired lipid and carbohydrate metabolism and neurocognitive functions, gynecological diseases, etc.), as well as on the effectiveness of vaccination. The introduction of molecular genetic approaches in biomedicine can have certain advantages over immunological, microbiological, and histological methods.

Full Text

Restricted Access

About the authors

Veronika G. Kanestri

Central Research Institute of Epidemiology Russian Federal Service for Supervision of Consumer Rights Protection and Human Well-Being; H-Clinic University Clinic

Email: kanestri@yandex.ru
MD, Senior Researcher; Infectiologist Moscow, Russia; Moscow, Russia

Anna A. Popova

Central Research Institute of Epidemiology Russian Federal Service for Supervision of Consumer Rights Protection and Human Well-Being

Email: asya-med@mail.ru
Cand. Med. Sci., Senior Researcher Moscow, Russia

Ekaterina I. Kulabukhova

Central Research Institute of Epidemiology Russian Federal Service for Supervision of Consumer Rights Protection and Human Well-Being; Peoples' Friendship University of Russia

Email: ekulabukhova@mail.ru
Infectiologist Moscow, Russia; Moscow, Russia

Vasily I. Shakhgildyan

Central Research Institute of Epidemiology Russian Federal Service for Supervision of Consumer Rights Protection and Human Well-Being; H-Clinic University Clinic

Email: vishakh@yandex.ru
Cand. Med. Sci., Senior Researcher; Infectiologist Moscow, Russia; Moscow, Russia

References

  1. Bernasconi E., Boubaker K., Junghans C., Flepp M., Furrer H.J., Haensel A. et al. Abnormalities of body fat distribution in HIV-infected persons treated with antiretroviral drugs: the Swiss HIV Cohort Study. J. Acquir. Immune Defic. Syndr., 2002; 31(1): 50-5. doi: 10.1097/00126334-200209010-00007
  2. Fontas E., van Leth F., Sabin C.A., Friis-Møller N., Rickenbach M., d’Arminio Monforte A. et al. Lipid profiles in HIV-infected patients receiving combination antiretroviral therapy: are different antiretroviral drugs associated with different lipid profiles? J. Infect. Dis. 2004; 189(6): 1056-74. doi: 10.1086/381783
  3. Bastard J.P., Caron M., Vidal H., Jan V., Auclair M., Vigouroux C. et al. Association between altered expression of adipogenic factor SREBP1 in lipoatrophic adipose tissue from HIV-1-infected patients and abnormal adipocyte differentiation and insulin resistance. Lancet 2002; 359(9311): 1026-31. DOI: https://doi.org/10.1016/S0140-6736(02)08094-7
  4. Mahley R.W., Rall S.C. Jr. Apolipoprotein E: far more than a lipid transport protein. Annu Rev. Genomics Hum. Genet. 2000; (1): 507-37. doi: 10.1146/annurev.genom.1.1.507
  5. Li W.W., Dammerman M.M., Smith J.D., Metzger S., Breslow J.L., Leff T. Common genetic variation in the promoter of the human apo CIII gene abolishes regulation by insulin and may contribute to hypertriglyceridemia. J. Clin. Invest. 1995; 96(6): 2601-5. doi: 10.1172/JCI118324
  6. Maher B., Alfirevic A., Vilar F.J., Wilkins E.G., Park B.K., Pirmohamed M. TNF-alpha promoter region gene polymorphisms in HIV-positive patients with lipodystrophy. AIDS 2002; 16(15): 2013-8. doi: 10.1097/00002030-200210180-00005
  7. Nolan D., Moore C., Castley A., Sayer D., Mamotte C., John M. et al. Tumour necrosis factor-alpha gene -238G/A promoter polymorphism associated with a more rapid onset of lipodystrophy. AIDS 2003; 17(1): 121-3
  8. Tarr P.E., Taffé P., Bleiber G., Furrer H., Rotger M., Martinez R. et al. Modeling the influence of APOC3, APOE, and TNF polymorphisms on the risk of antiretroviral therapy-associated lipid disorders. J. Infect. Dis. 2003; 17(1): 121-3. doi: 10.1097/00002030-200301030-00017
  9. Egana-Gorrono L., Martinez E., Cormand B., Escribà T., Gatell J., Arnedo M. Impact of genetic factors on dyslipidemia in HIV-infected patients starting antiretroviral therapy. AIDS 2013; 27(4): 529-38. doi: 10.1097/QAD.0b013e32835d0da1
  10. Pociot F., McDermott M.F. Genetics of type 1 diabetes mellitus. Genes Immun. 2002; 3(5): 235-49. doi: 10.1038/sj.gene.6363875
  11. Канестри В.Г., Миронов К.О., Кравченко А.В., Покровская А.В., Киреев Д.В., Дрибноходова О.П., Дунаева Е.А., Цыганова Г.М., Харбутли М.А., Голиусова М.Д., Коннов В.В., Козырина Н.В., Шахгильдян В.И., Куимова У.А., Попова А.А., Ефремова О.С., Коннов Д.С. Генетические маркеры клинически выраженных нежелательных явлений у больных ВИЧ-инфекцией, получающих антиретровирусную терапию. ВИЧ-инфекция и иммуносупрессии 2014; 6(2): 49-57. https://doi.org/10.22328/2077-9828-2014-6-2-49-57
  12. Levine A.J., Panos S.E., Horvath S. Genetic, transcriptomic, and epigenetic studies of HIV-associated neurocognitive disorder. J. Acquir. Immune Defic. Syndr. 2014; 65(4): 481-503. doi: 10.1097/QAI.0000000000000069
  13. Morgan E.E., Woods S.P., Letendre S.L., Franklin D.R., Bloss C., Goate A. et al. Apolipoprotein E4 genotype does not increase risk of HIV-associated neurocognitive disorders. J. Neurovirol. 2013; 19(2): 150-6. doi: 10.1007/s13365-013-0152-3.
  14. WHO. Global tuberculosis report 2019. https://www.who.int/tb/global-report-2019
  15. Raghavan S., Alagarasu K., Selvaraj P. Immunogenetics of HIV and HIV associated tuberculosis. Tuberculosis 2012; 92(1): 8-30. doi: 10.1016/j.tube.2011.08.004
  16. Alagarasu K., Selvaraj P., Swaminathan S., Raghavan S., Narendran G., Narayanan P.R. Mannose binding lectin gene variants and susceptibility to tuberculosis in HIV-1 infected patients of South India. Tuberculosis (Edinb.) 2007; 87(6): 53543. doi: 10.1016/j.tube.2007.07.007
  17. Garcia-Laorden M.I., Pena M.J., Caminero J.A., Garcia-Saavedra A., Campos-Herrero M.I., Caballero A., Rodriguez-Gallego C. Influence of mannose-binding lectin on HIV infection and tuberculosis in a Western-European population. Mol. Immunol. 2006; 43(14): 2143-50.
  18. Pulido I., Leal M., Genebat M., Pacheco Y.M., Sâez M.E., Soriano-Sarabia N. The TLR4 ASP299GLY polymorphism is a risk factor for active tuberculosis in Caucasian HIV-infected patients. Curr. HIV Res. 2010; 8(3): 253-8. DOI: ABS-66a [pii]
  19. Байке Е.Е., Богодухова Е.С. Pоль генетического полиморфизма Tоll-подобных рецепторов в развитии туберкулеза у больных ВИЧ-инфекцией. Забайкальский медицинский вестник 2018; (2): 1-6.
  20. Кулабухова Е.И., Миронов К.О., Дунаева Е.А., Киреев Д.Е., Наркевич А.Н., Зимина В.Н., Кравченко А.В. Ассоциация полиморфизмов в генах Toll-подобных рецепторов и маннозосвязывающего лектина с риском развития туберкулеза у пациентов с ВИЧ-инфекцией. ВИЧ-инфекция и иммуносупрессии 2019; (4): 61-9.
  21. Namale P.E., Abdullahi L.H., Fine S., Kamkuemah M., Wilkinson R.J., Meintjes G. Paradoxical TB-IRIS in HIV-infected adults: a systematic review and metaanalysis. Future Microbiol. 2015; 10(6): 1077-99. http://www.ncbi.nlm.nih.gov/pubmed/26059627
  22. De Sâ N.B.R., Ribeiro-Alves M., da Silva T.P., Pilotto J.H., Rolla V.C., Giacoia-Gripp C.B.W. et al. Clinical and genetic markers associated with tuberculosis, HIV-1 infection, and TB/HIV-immune reconstitution inflammatory syndrome outcomes. BMC Infect. Dis. 2020; 20(1): 59. doi: 10.1186/s12879-020-4786-5
  23. Бартлетт Дж., Галант Дж., Фам П. Клинические аспекты ВИЧ-инфекции. Пер. с англ. М.: Р. Валент, 2012. 528 с. Bartlett J., Galant J., Fam P.
  24. Ермак Т.Н., Кравченко А.В., Шахгильдян В.И., Перегудова А.Б., Голиусова М.Д., Ядрихинская М.С. Развитие оппортунистических поражений у больных ВИЧ-инфекцией при отсутствии выраженного иммунодефицита. Тер. архив 2018; 90(11): 9-11.
  25. Uzé G., Monneron D. IL-28 and IL-29: Newcomers to the interferon family. Biochimie 2007; 89: 729-34. doi: 10.1016/j.biochi.2007.01.008
  26. Srinivas S., Dai J., Eskdale J., Gallagher G.E., Megjugorac N.J., Gallagher G. Interferon-X1 (interleukin-29) preferentially down-regulates interleukin-13 over other T helper type 2 cytokine responses in vitro. Immunology 2008; 125: 492-502. doi: 10.1111/j.1365-2567.2008.02862.x
  27. Li J., Hu S., Zhou L., Ye L., Wang X., Ho J., Ho W. Interferon lambda inhibits herpes simplex virus type I infection of human astrocytes and neurons. Glia 2011; 59: 58-67. doi: 10.1002/ glia.21076
  28. Saviö B., Stanojloviö S., Hadzi-Miliö M., Donoviö N., Miloseviö-Dordeviö O., Milisavljeviö F. et al. IL28B Genetic Variations in Patients with Recurrent Herpes Simplex Keratitis. Medicina (Kaunas) 2019; 55(10). pii: E642. doi: 10.3390/medicina55100642
  29. Langhans B., Kupfer B., Braunschweiger I., Arndt S., Schulte W., Nischalke H.D. et al. Interferon-lambda serum levels in hepatitis C. J. Hepatol. 2011; 54: 859-65. doi: 10.1016/j.jhep.2010.08.020
  30. Покровский В.В. (ред.). ВИЧ-инфекция и СПИД. Национальное руководство. 2-е изд., перераб. и доп. М.: ГЭОТАР-Медиа, 2020. 696 с.
  31. Ядрихинская М.С., Шахгильдян В.И., Матосова С.В., Орловский А.А., Яровая Е.Б., Шипулина О.Ю. Значение качественных и количественных характеристик определения ДНК герпесвирусов (ЦМВ, ВЭБ, ВГЧ-6, ВПГ-1,2) в биологических жидкостях при поражении легких у больных ВИЧ-инфекцией. Сборник трудов Международной научно-практической конференции «Молекулярная диагностика 2018». Минск: СтройМедиаПроект, 2018; 357-9.
  32. Шахгильдян В.И., Ядрихинская М.С., Орловский А.А., Яровая Е.Б. Клиническая, вирусологическая, иммунологическая характеристика госпитализированных больных ВИЧ-инфекцией. Тер архив 2018; 90(11): 18-23.
  33. Bray F., Ferlay J., Soerjomataram I., Siegel R.L., Torre L.A., Jemal A. Global Cancer Statistics 2018: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2018; 0: 1-31.
  34. Liu S., Chen J., Yan Z., Dai S., Li C., Yao Y., Shi L. Polymorphisms in the CCR5 promoter associated with cervical intraepithelial neoplasia in a Chinese Han population. BMC Cancer 2019; 19(1): 525. doi: 10.1186/ s12885-019-5738-6
  35. Zheng B., Wiklund F., Gharizadeh B., Sadat M., Gambelunghe G., Hallmans G. et al. Genetic polymorphism of chemokine receptors CCR2 and CCR5 in Swedish cervical cancer patients. Anticancer Res. 2006; 26(5B): 366974.
  36. Santos E.U., Lima G.D., Oliveira L., Herâclio A., Silva H.D., Crovella S. et al. CCR2 and CCR5 genes polymorphisms in women with cervical lesions from Pernambuco, Northeast Region of Brazil: a case-control study. Mem. Inst. Oswaldo Cruz 2016; 111(3): 174 - 80. doi: 10.1590/0074-02760150367
  37. Yu K.J., Rader J.S., Borecki I., Zhang Z., Hildesheim A. CD83 polymorphisms and cervical cancer risk. Gynecol. Oncol. 2009; 114(2): 319-22. doi: 10.1016/j.ygyno.2009.04.033
  38. Gong J.M., Shen Y., Shan W.W., He Y.X. The association between MTHFR polymorphism and cervical cancer. Sci. Rep. 2018; 8(1): 7244. doi: 10.1038/s41598-018-25726-9
  39. Wang Y., Luo T. LINC00 673 rs11655237 Polymorphism Is Associated With Increased Risk of Cervical Cancer in a Chinese Population. Cancer Control. 2018; 25(1): 1073274818803942. doi: 10.1177/1073274818803942
  40. Scepanovic P., Alanio C., Hammer C., Hodel F., Bergstedt J., Patin E. et al. Human genetic variants and age are the strongest predictors of humoral immune responses to common pathogens and vaccines. Genome Med. 2018; 10(1): 59. doi: 10.1186/s13073-018-0568-8
  41. Png E., Thalamuthu A., Ong R.T., Snippe H., Boland G.J., Seielstad M. A genome-wide association study of hepatitis B vaccine response in an Indonesian population reveals multiple independent risk variants in the HLA region. Hum. Mol. Genet. 2011; 20(19): 3893-8. doi: 10.1093/hmg/ddr302
  42. Zhang Z., Wang C., Liu Z. Zou G., Li J., Lu M. Host Genetic Determinants of Hepatitis B Virus Infection. Front Genet. 2019; 10: 696. doi.org/10.3389/fgene.2019.00696
  43. Wu J.N., Wen X.Z., Zhou Y., Lin D., Zhang S.Y., Yan Y.S. Impact of the free-vaccine policy on timely initiation and completion of hepatitis B vaccination in Fujian China. J. Viral. Hepatol. 2015; 22(6): 551-60. doi: 10.1111/jvh.12359
  44. Wang Y., Zhang X., Zhang H., Lu Y., Huang H., Dong X. et al. Coiled-coil networking shapes cell molecular machinery. Mol. Biol. Cell. 2012; 23(19): 3911-22. doi: 10.1091/mbc. E12-05-0396
  45. Pacenti M., Maione N., Lavezzo E., Franchin E., Dal Bello F. et al. Measles Virus Infection and Immunity in a Suboptimal Vaccination Coverage Setting. Vaccines (Basel) 2019; 7(4). pii: E199. doi: 10.3390/vaccines 7040199

Supplementary files

Supplementary Files
Action
1. JATS XML

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies