Molecular genetic mechanisms of drug resistance in Plasmodium falciparum


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Objective. To investigate the metabolic characteristics of P. falciparum, the pharmacological action of antimalarial drugs, and the molecular genetic mechanisms of drug resistance in the malaria pathogen P. falciparum. Materials and methods. Data on current antimalarial drugs, the genome of Plasmodium malaria, and the mechanisms of drug resistance in P. falciparum were analyzed. Results. It was shown that antimalarial drugs could block or competitively replace transport proteins, and the key parasite enzymes that catalyzed the major metabolic pathways of plastic and energy exchange. The targets could be metabolites of hemoglobin absorbed by Plasmodium, enzymes involved in the electron transport chain, as well as parasite enzymes, such as cytochrome b, dihydropteroate synthase, dihydrofolate reductase, calcium-dependent ATP synthase, phosphatidylinositol-3-hydrogen kinase, dihydroorotate dehydrogenase, and others. The main mechanisms of drug resistance were associated with the genetic heterogeneity of infectious agents. Of great importance in the formation of resistance are SNP mutations at the loci of the PfCRT, PfMDRl, PfATP6, PfDHPS, PfDHFR, and PfCYTB genes, as well as genetic recombination in Plasmodium during erythrocytic schizogony. The formation of resistant strains and the selection of drug resistance mutations were facilitated by long-term blood parasite persistence while taking antimalarial drugs. Conclusion. The basic principles of etiotropic treatment for malaria should be early treatment, as well as combination therapy using the most effective antimalarial drugs of different pharmacological groups at dosages ensuring the rapid elimination of pathogens from the patient’s body.

Full Text

Restricted Access

About the authors

Aleksey I. Solovyev

S.M. Kirov Military Medical Academy Ministry of Defense of the Russian Federation

Email: solopiter@gmail.com
MD, Professor, Department of Biology (with Course of Medical Genetics) Saint Petersburg, Russia

Aleksandr N. Uskov

S.M. Kirov Military Medical Academy Ministry of Defense of the Russian Federation; Pediatric Research and Clinical Center for Infectious Diseases Federal Biomedical Agency of Russia

Email: aouskov@gmail.com
MD, Professor, Deputy Director for Research in the Development and Coordination of National and International Projects Saint Petersburg, Russia; Saint Petersburg, Russia

Aleksandr N. Kovalenko

S.M. Kirov Military Medical Academy Ministry of Defense of the Russian Federation

Email: 9268754@mail.ru
MD, Associate Professor, Department of Infectious Diseases (with Course of Medical Parasitology and Tropical Diseases) Saint Petersburg, Russia

Vladimir A. Kapatsyna

S.P Botkin Clinical Infectious Diseases Hospital

Email: ingashi@mail.ru
Head, Department Saint Petersburg, Russia

Aleksandr I. Rakin

S.M. Kirov Military Medical Academy Ministry of Defense of the Russian Federation

Email: rakinalex@gmail.com
Educator, Department of Biology (with Course of Medical Genetics) Saint Petersburg, Russia

References

  1. Бронштейн А.М., Малышев Н.А., Лобзин Ю.В. От колониальной и военной медицины к медицине тропической: дорога временных поражений и знаменитых побед. Эпидемиол. и инфекц. бол. 2015; 20(2): 43-8.
  2. Лысенко А.Я., Кондрашин А.В., Ежов М.Н. Маляриология. 2-е изд. Копенгаген: ВОЗ. Европейское региональное бюро, 2003. 510 с.
  3. Сергиев В.П., Баранова А.М., Кожевникова Г.М., Токмалаев А.К., Чернышев Д.В., Ченцов В.Б., Куасси Д. М. Проблемы клинической диагностики и лечения P. falciparum-малярии в Российской Федерации. Тер. архив 2018; 90(11): 4-8. doi: 10.26442/terarkh201890114-8
  4. WHO. World malaria report 2018. https://www.who.int/ malaria/ publications/world-malaria-report-2018/report/en/
  5. Баранова А.М., Гузеева Т.М., Морозова Л.Ф. Смертельные исходы от тропической малярии (20092012 гг.). Мед. паразитол. и паразитар. бол. 2013; (3): 50-2.
  6. Коваленко А.Н., Мусатов В.Б., Соловьев А.И., Капацына В.А. Сложности терапии P. falciparum -малярии в Российской Федерации. Тер. архив 2019; 91(11): 75-80. doi: 10.26442/00403660.2019.11.000442
  7. Усков А.Н., Соловьев А.И., Кравцов В.Ю., Гудков Р.В., Коломоец Е. В., Левковский А.Е. Молекулярногенетические механизмы вирулентности Plasmodium falciparum и патогенеза тропической малярии. Журнал инфектологии 2018; 10 (3): 23-30. https://doi.org/10. 22625/2072-6732-2018-10-3-23-29
  8. Fairhurst R.M., Wellems T.E. Malaria (Plasmodium Species). In: Bennett J., Dolin R., Blaser M.J. (eds.). Mandell, Douglas and Bennett’s. Principles and Practice of Infectious Diseases. 8th ed. Philadelphia: Elsevier; 2015: 3070-90.
  9. WHO. Guidelines for the treatment of malaria, 2015. https://www.who.int/malaria/publications/atoz/9789241549127/en/
  10. Allman E.L., Painter H.J., Samra J., Carrasquilla M., Llinâs M. Metabolomic profiling of the malaria box reveals antimalarial target pathways. Antimicrob. Agents Chemother. 2016; 60(11): 6635-49. doi: 10.1128/AAC.01224-16
  11. Mundwiler-Pachlatkoa E., Beck H.-P. Maurer’s clefts, the enigma of Plasmodium falciparum. PNAS 2013; 110(50): 19987-94. doi: 10.1073/pnas.1309247110.
  12. Dahl E.L., Shock J.L., Shenai B.R., Gut J., DeRisi J.L., Rosenthal Ph.J. Tetracyclines specifically target the apicoplast of the malaria parasite Plasmodium falciparum. Antimicrob. Agents Chemother. 2006; 50(9): 3124-31. doi: 10.1128/AAC.00394-06
  13. Lim L., McFadden G. The evolution, metabolism and functions of the apicoplast. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 2010; 365(1541): 749-63. DOI: 10.1098/ rstb.2009.0273
  14. Chou A.C., Chevli R., Fitch C.D. Ferriprotoporphyrin IX fulfills the criteria for identification as the chloroquine receptor of malaria parasites. Biochemistry 1980; 19(8): 1543-49. doi: 10.1021/bi00549a600
  15. Ralph S.A., D’Ombrain M.C., McFadden G.I. The apicoplast as an antimalarial drug target. Drug Resistance Updates 2001; 4(3): 145-51. doi: 10.1054/drup.2001.0205
  16. Mudeppa D.G., Pang C.K., Tsuboi T., Endo Y. Cell-free production offunctional Plasmodium falciparum dihydrofolate reductase-thymidylate synthase. Mol. Biochem. Parasitol. 2007; 151(2): 216-9. doi: 10.1016/j.molbiopara.2006.10.016.
  17. Ke H., Ganesan S.M., Dass S., Morrisey J.M., Pou S., Nilsen A. et al. Mitochondrial type II NADH dehydrogenase of Plasmodium falciparum (PfNDH2) is dispensable in the asexual blood stages. PLoS One 2019; 14(4): e0214023. https://doi.org/10.1371/journal.pone.0214023
  18. Gray M.W., Lang B.F., Cedergren R., Golding G.B., Pou S., Nilsen A. et al. Genome structure and gene content in protist mitochondrial DNAs. Nucleic Acids Res. 1998; 26(4): 865878. doi: 10.1093/nar/26.4.865
  19. Daniyan M.O., Przyborski J.M., Shonhai A. Partners in mischief: functional networks of heat shock proteins of Plasmodium falciparum and their influence on parasite virulence. Biomolecules 2019; 9(7): 1-17. doi: 10.3390/biom9070295
  20. Cooper R.A., Ferdig M.T., Su X., Ursos L.M., Mu J., Nomura T. et al. Alternative mutations at position 76 of the vacuolar transmembrane protein PfCRT are associated with chloroquine resistance and unique stereospecific quinine and quinidine responses in Plasmodium falciparum. Molecular. Pharmacol. 2002; 61(1): 35-42. doi: 10.1124/mol.61.1.35
  21. Fidock D.A., Nomura T., Talley A.K., Cooper R.A., Dzekunov S., Ferdig M. et al. Mutations in the P. falciparum digestive vacuole transmembrane protein PfCRT and evidence for their role in chloroquine resistance. Mol. Cell. 2000; 6(4): 861-71. doi: 10.1016/s1097-2765(05)00077-8
  22. Bertaux L., Quang L.H., Sinou V., Thanh N.X., Parzy D. New PfATP6 mutations found in Plasmodium falciparum isolates from Vietnam. Antimicrob. Agents and Chemother. 2009; 53(10): 4570-71. doi: 10.1128/AAC.00684-09.
  23. Menemedengue V., Sahnouni K., Basco L., Tahar R. Molecular Epidemiology of Malaria in Cameroon. XXX. Sequence Analysis of Plasmodium falciparum ATPase 6, dihydrofolate reductase, and dihydropteroate synthase resistance markers in clinical isolates from children treated with an artesunate-sulfadoxine-pyrimethamine combination. Am. J. Trop. Med. Hyg. 2011; 85(1): 22-5. doi: 10.4269/ajtmh.2011.10-0523
  24. Peterson D.S., Walliker D., Wellems T.E. Evidence that a point mutation in dihydrofolate reductase-thymidylate synthase confers resistance to pyrimethamine in falciparum malaria. Proc. Natl. Acad. Sci. USA 1988; 85(23): 9114-18. doi: 10.1073/pnas.85.23.9114
  25. Wang P., Read M., Sims P.F.G., Hyde J.E. Sulfadoxine resistance in the human malaria parasite Plasmodium falciparum is determined by mutations in dihydropteroate synthetase and an additional factor associated with folate utilization. Molecular. Microbiology 1997; 23(5): 979-86. DOI: https://doi.org/10.1046/j.1365-2958.1997.2821646.x
  26. Fisher N., Majid R.A., Antoine T., Helal M.A., Warman A.J., Johnson D., et al. Cytochrome b mutation Y268S conferring atovaquone resistance phenotype in malaria parasite results in reduced parasite bc1 catalytic turnover and protein expression. J. Biol. Chem. 2012; 287(13): 9731-41. doi: 10.1074/jbc.M111.324319
  27. Miotto O., Amato R., Ashley E.A., Macinnis B., Almagro-Garcia J., Ch. Amaratunga et al. Genetic architecture of artemisinin-resistant Plasmodium falciparum. Nat. Genet. 2015; 47(3): 226-34. doi: 10.1038/ng.3189
  28. Njokah M.J., Kang’ethe J.N., Kinyua J., Kariuki D., Kimani F.T. In vitro selection of Plasmodium falciparum PfCRT and PfMDR1 variants by Artemisinin. Malar. J. 2016; 15: 381. https://doi.org/10.1186/s12936-016-1443-y
  29. Gardner M.J., Hall N., Fung E., White O. Genome sequence of the human malaria parasite Plasmodium falciparum. Nature 2002; 419(6906): 498-511. doi: 10.1038/nature01097
  30. Verdier F., Bras J.L., Clavier F., Hatin I., Blayo M. Chloroquine uptake by Plasmodium falciparum-infected human erythrocytes during in vitro culture and its relationship to chloroquine resistance. Antimicrob. Agents. Chemother. 1985; 27(4): 561-4. doi: 10.1128/AAC.27.4.561
  31. Pickard A.L., Wongsrichanalai C., Purfield A., Kamwendo D., Emery К., Zalewski Ch. et al. Resistance to antimalarials in Southeast Asia and genetic polymorphisms in PfMDR1. Antimicrob. Agents. Chemother. 2003; 47(8): 2418-23. doi: 10.1128/aac.47.8.2418-2423.2003
  32. Price R.N., Uhlemann A.C., Brockman A., McGready R. , Ashley E., Phaipun L. et al. Mefloquine resistance in Plasmodium falciparum and increased pfmdr1 gene copy number. Lancet 2004; 364(9432): 438-47. doi: 10.1016/S0140-6736(04)16767-6
  33. Reed M., Saliba K., Caruana S., Kirk K. Pgh1 modulates sensitivity and resistance to multiple antimalarials in Plasmodium falciparum. Nature 2000; 403(6772): 906-9. doi: 10.1038/35002615
  34. Ferdig M.T., Cooper R.A., Mu J., Deng B., Joy D.A., Su X.-Z. et al. Dissecting the loci of low-level quinine resistance in malaria parasites. Mol. Microbiol. 2004; 52(4): 985-97. doi: 10.1111/j.1365-2958.2004.04035.x
  35. Mu J., Ferdig M.T., Feng X., Joy D.A., Duan J., Furuya T. et al. Multiple transporters associated with malaria parasite responses to chloroquine and quinine. Molecular. Microbiology 2003; 49: 977-89. doi: 10.1046/j.1365-2958.2003.03627.x
  36. Triglia T., Menting J.G., Wilson C., Cowman A.F. Mutations in dihydropteroate synthase are responsible for sulfone and sulfonamide resistance in Plasmodium falciparum. Proc. Natl. Acad. Sci. USA 1997; 94(25): 13944-9. doi: 10.1073/pnas.94.25.13944
  37. Cowman A.F., Morry M.J., Biggs B.A., Cross G.A., Foote S. J. Amino acid changes linked to pyrimethamine resistance in the dihydrofolate reductase-thymidylate synthase gene of Plasmodium falciparum. Proc. Natl. Acad. Sci. USA. 1988; 85(23): 9109-13. doi: 10.1073/pnas.85.23.9109
  38. Srivastava I.K., Morrisey J.M., Darrouzet E., Daldal F., Vaidya A.B. Resistance mutations reveal the atovaquone binding domain of cytochrome b in malaria parasites. Molecular. Microbiology 1999; 33(4): 704-11. doi: 10.1046/j.1365-2958.1999.01515.x
  39. Srivastava I. K., Rottenberg H., Vaidya A.B. Atovaquone, a broad spectrum antiparasitic drug, collapses mitochondrial membrane potential in a malarial parasite. J. Biol. Chem. 1997; 272(7): 3961-66. https://www.jbc.org/content/272/7/3961.long.
  40. Srivastava I.K., Vaidya A.B. A mechanism for the synergistic antimalarial action of atovaquone and proguanil. Antimicrob. Agents. Chemother. 1999; 43(6): 1334-39. doi: 10.1128/AAC.43.6.1334
  41. Schwöbel B., Alifrangis M., Salanti A., Jelinek T. Different mutation patterns of atovaquone resistance to Plasmodium falciparum in vitro and in vivo: rapid detection of codon 268 polymorphisms in the cytochrome b as potential in vivo resistance marker. Malar. J. 2003; 2: 5. https://doi.org/10.1186/1475-2875-2-5
  42. Fidock D.A., Nomura T., Wellems T.E Cycloguanil and its parent compound proguanil demonstrate distinct activities against Plasmodium falciparum malaria parasites transformed with human dihydrofolate reductase. Molecular. Pharmacology 1998; 54(6): 1140-7. DOI: 10.1124/ mol.54.6.1140.
  43. Watkins W.M., Chulay J.D., Sixsmith D.G., Spencer H.C., Howells R.E. A preliminary pharmacokinetic study of the antimalarial drugs, proguanil and chlorproguanil. J. Pharm. Pharmacol. 1987; 39(4): 261-5. DOI: https:// doi.org/10.1111/j.2042-7158.1987.tb06263.x
  44. Lisewski A.M., Quiros M., Mittale M., Putlurifgh N., Sreekumar A., Haeggstrom J.Z. et al. Potential role of Plasmodium falciparum exported protein 1 in the chloroquine mode of action. Int. J. Parasitol. Drugs. Drug. Resist. 2018; 8(1): 31-5. doi: 10.1016/j.ijpddr.2017.12.003.
  45. Lisewski A.M., Quiros M., Ng C.L., Adikesavan A.K., Miura K., Putluri N. et al. Supergenomic network compression and the discovery of EXP1 as a glutathione transferase inhibited by artesunate. Cell. 2014; 158(4): 91628. doi: 10.1016/j.cell.2014.07.011
  46. Miley G.P., Pou S., Winter R., Nilsen A., Li Y., Kelly J.X. et al. ELQ-300 prodrugs for enhanced delivery and singledose cure of malaria. Antimicrob. Agents. Chemother. 2015; 59(9): 5555-60. doi: 10.1128/AAC.01183-15
  47. Macintyre F., Ramachandruni H., Burrows J.N., Holm R., Thomas A., Möhrle J.J. et al. Injectable anti-malarials revisited: discovery and development of new agents to protect against malaria. Malar. J. 2018; 17: 402. https://doi.org/10.1186/s12936-018-2549-1.
  48. Nilsen A., LaCrue A.N., White K.L., Forquer I.P., Cross R.M., Marfurt J. et al. Quinolone-3-diarylethers: a new class of antimalarial drug. Sci. Transl. 2013; 5(177): 1-13. doi: 10.1126/scitranslmed.3005029.
  49. Smilkstein M.J., Pou S., Krollenbrock A., Bleyle L.A., Dodean R.A., Frueh L. et al. ELQ-331 as a prototype for extremely durable chemoprotection against malaria. Malar. J. 2019; 18 (1): 291. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6712883

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2020 Bionika Media

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies