Comparative analysis of screening methods for point mutations, by using the detection of SARS-CoV-2 N501Y mutation as an example


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Objective. To compare different methods for detection of point nucleotide mutations in the study of SARS-CoV-2 genetic diversity. Materials and methods. The study was conducted on a batch of samples from patients, which contained SARS-CoV-2 genetic material. The investigators used three methods (Sanger sequencing/fragment analysis, real-time PCR, and loop-mediated isothermal amplification) as the gold standard. Results. Genotyping-by-sequencing analysis was carried out to examine 372 samples from patients; 54, 7, and 25 samples were found to belong to the Alpha, Beta, and B.1.1.523 genetic variants, respectively. It was shown that both the real-time PCR method and loop-mediated isothermal amplification could be employed to detect SARS-CoV-2 N501Y mutation, by using various samples, including those for various (Alpha, Beta) genetic variants. Conclusion. The use of PCR-based screening methods makes it possible not only to reduce the economic and time costs of genotyping SARS-CoV-2 samples, but also to increase study coverage, by obtaining results for the samples unsuitable for sequencing.

Full Text

Restricted Access

About the authors

Anna S. Cherkashina

Central Research Institute of Epidemiology, Russian Federal Service for Supervision of Consumer Rights Protection and Human Well-Being

Email: cherkashina@pcr.ms
Cand. Chem. Sci., Head, Research Group of Genetic Engineering and Biotechnology

Anna G. Golubeva

Central Research Institute of Epidemiology, Russian Federal Service for Supervision of Consumer Rights Protection and Human Well-Being

Email: golubeva@cmd.su
Laboratory Researcher

Elena D. Solovyeva

Central Research Institute of Epidemiology, Russian Federal Service for Supervision of Consumer Rights Protection and Human Well-Being

Email: solovyova@cmd.su
Junior Researcher

Anna V. Valdokhina

Central Research Institute of Epidemiology, Russian Federal Service for Supervision of Consumer Rights Protection and Human Well-Being

Email: valdokhina@cmd.su
Researcher

Victoria P. Bulanenko

Central Research Institute of Epidemiology, Russian Federal Service for Supervision of Consumer Rights Protection and Human Well-Being

Email: bulanenko@cmd.su
Researcher

Vadim V. Petrov

Central Research Institute of Epidemiology, Russian Federal Service for Supervision of Consumer Rights Protection and Human Well-Being

Email: petrov@pcr.ms
Head, Researcher Group for Development of New Molecular Biological Technologies

Kirill V. Krasovitov

Central Research Institute of Epidemiology, Russian Federal Service for Supervision of Consumer Rights Protection and Human Well-Being

Email: krasovitov@cmd.su
White-Collared Planner

Anna S. Esman

Central Research Institute of Epidemiology, Russian Federal Service for Supervision of Consumer Rights Protection and Human Well-Being

Email: esman@cmd.su
Researcher

Konsantin O. Mironov

Central Research Institute of Epidemiology, Russian Federal Service for Supervision of Consumer Rights Protection and Human Well-Being

Email: mironov@pcr.ru
Dr. Biol. Sci., Head, Research Group for Development of New Methods for Detection of Genetic Polymorphisms

Elena N. Rodionova

Central Research Institute of Epidemiology, Russian Federal Service for Supervision of Consumer Rights Protection and Human Well-Being

Email: rodionova@cmd.su
Head, Initial Production Laboratory

Olga Yu. Shipulina

Central Research Institute of Epidemiology, Russian Federal Service for Supervision of Consumer Rights Protection and Human Well-Being

Email: olga.shipulina@pcr.ms
Senior Researcher

Kamil F. Khafizov

Central Research Institute of Epidemiology, Russian Federal Service for Supervision of Consumer Rights Protection and Human Well-Being

Email: khafizov@cmd.su
Cand. Biol. Sci., Head, Research Group for Development of New Diagnostic Methods Based on Next-Generation Sequencing Technologies

Vasily G. Akimkin

Central Research Institute of Epidemiology, Russian Federal Service for Supervision of Consumer Rights Protection and Human Well-Being

Email: crie@crie.ru
MD, Academician of the Russian Academy of Sciences, Director

References

  1. Tegally H., Wilkinson E., Giovanetti M. et al. Emergence and rapid spread of a new severe acute respiratory syndrome-related coronavirus 2 (SARS-CoV-2) lineage with multiple spike mutations in South Africa. medRxiv 2020; 2. doi: 10.1101/2020.12.21.20248640
  2. ВОЗ анонсировала простые и легко-поризносимые обозначения для вариантов SARS-CoV-2. https://www.who.int/news/item/31-05-2021-who-announces-simple-easy-to-say-labels-for-sars-cov-2-variants-of-interest-and-concern
  3. Gushchin V.A., Dolzhikova I.V., Shchetinin A.M. et al. Neutralizing activity of sera from sputnik v-vaccinated people against variants of concern (VOC: B.1.1.7, B.1.351, P.1, B.1.617.2, B.1.617.3) and Moscow endemic SARS-CoV-2 variants. Vaccines 2021; 9(7): 1-12. doi:10.3390/ vaccines9070779
  4. Zhou W., Wang W. Fast-spreading SARS-CoV-2 variants: challenges to and new design strategies of COVID-19 vaccines. ignal Transduct. Target. Ther. 2021; 6(1): 1-6. doi:10.1038/ s41392-021-00644-x
  5. Laffeber C., de Koning K., Kanaar R., Lebbink J.H.G. Experimental Evidence for Enhanced Receptor Binding by Rapidly Spreading SARS-CoV-2 Variants. J. Mol. Biol. 2021; 433(15):. 167058. doi: 10.1016/j.jmb.2021. 167058
  6. Mercatelli D., Giorgi F.M. Geographic and Genomic Distribution of SARS-CoV-2 Mutations. Microbiol. 2020; 11: 1-13. doi: 10.3389/fmicb.2020. 01800
  7. Colson P., Levasseur A., Delerce J. et al. Spreading of a new SARS-CoV-2 N501Y spike variant in a new lineage. Clin Microbiol. Infect. 2021; 27(9): 1352.e1-1352.e5. doi:https://doi.org/10.1016/j.cmi.2021.05.006
  8. Durmaz B, Abdulmajed O, Durmaz R. Mutations observed in the SARS-CoV-2 spike glycoprotein and their effects in the interaction of virus with ACE-2 receptor. Medeni Med. J. 2020; 35(3): 253-60. doi: 10.5222/MMJ. 2020.98048
  9. Ramanathan M., Ferguson I.D., Miao W., Khavari P.A. SARS-CoV-2 B.1.1.7 and B.1.351 spike variants bind human ACE2 with increased affinity. Lancet Infect. Dis. 2021; 21(8): 1070. doi: 10.1016/S1473-3099(21)00262-0
  10. Harvey W.T., Carabelli A.M., Jackson B. et al. SARS-CoV-2 variants, spike mutations and immune escape. Nat. Rev. Microbiol. 2021; 19(7): 409-24. doi: 10.1038/s41579-021-00573-0
  11. ВОЗ. Отслеживание вариантов SARS-CoV-2. https://www.who.int/en/activities/tracking-SARS-CoV-2-variants/. [WHO. Tracking SARS-CoV-2 variants]. https://www.who.int/en/activities/tracking-SARS-CoV-2-variants/.
  12. Борисова Н.И., Котов И.А., Колесников А.А., Коптелева В.В., Сперанская А.С. и др. Мониторинг распространения вариантов SARS-CoV-2 (Coronaviridae: Coronavirinae: Betacoronavirus; Sarbecovirus) на территории Московского региона с помощью таргетного высокопроизводительного секвенирования. Вопр. вирусол. 2021; 66(4): 269-78. doi: 10.36233/0507-4088-72
  13. Sanger F., Nicklen S., Coulson A.R. DNA sequencing with chain-terminating inhibitors. Proc. Natl. Acad. Sci.USA 1977; 74(12): 5463-7. doi: 10.1073/ pnas.74.12.5463
  14. Bell J. The polymerase chain reaction. Immunol Today. 1989; 10(10): 351-5. doi: 10.1016/0167-5699(89)90193-X
  15. Kramer MF, Coen DM. The polymerase chain reaction. Curr. Protoc. Protein Sci. 22002; Appendix 4: 44-50. doi: 10.1002/0471140864.psa04js29
  16. Gibbs R.A. DNA amplification by the polymerase chain reaction. Anal. Chem. 1990; 62(13): 1202-14. doi:10.1021/ ac00212a004
  17. Abdel Sater F., Younes M., Nassar H., Nguewa P., Hamze K. A rapid and low-cost protocol for the detection of B.1.1.7 lineage of SARS-CoV-2 by using SYBR Green-based RT-qPCR. Mol. Biol. Rep. Published online 2021. doi: 10.1007/s11033-021-06717-y
  18. Vega-Magana N., Sanchez-Sinchez R., Hernindez-Bello J. et al. RT-qPCR Assays for Rapid Detection of the N501Y, 69-70del, K417N, and E484K SARS-CoV-2 Mutations: A Screening Strategy to Identify Variants With Clinical Impact. Front Cell Infect. Microbiol. 2021; 11: 1-11. doi:10.3389/ fcimb.2021.672562
  19. Kong Y.Y., Thay C.H., Tin T.C., Devi S. Rapid detection, serotyping and quantitation of dengue viruses by TaqMan realtime one-step RT-PCR. J. Virol. Methods 2006;.138(1-2): 123-30. doi: 10.1016/j.jviromet.2006.08.003
  20. Notomi T., Mori Y., Tomita N., Kanda H. Loop-mediated isothermal amplification (LAMP): principle, features, and future prospects. J. Microbiol. 2015; 53(1): 1-5. doi:10.1007/ s12275-015-4656-9
  21. Fowler V.L., Armson B., Gonzales J. L. et al. A highly effective reverse-transcription loop-mediated isothermal amplification (RT-LAMP) assay for the rapid detection of SARS-CoV-2 infection. J. Infect. 2021; 82(1): 117-25. doi: 10.1016/j. jinf.2020.10.039
  22. Alekseenko A., Barrett D., Pareja-Sanchez Y. et al. Direct detection of SARS-CoV-2 using non-commercial RT-LAMP reagents on heat-inactivated samples. Sci. Rep. 2021; 11(1): 1-10. doi: 10.1038/s41598-020-80352-8
  23. Huang W.E., Lim B., Hsu C.C. et al. RT-LAMP for rapid diagnosis of coronavirus SARS-CoV-2. Microb. Biotechnol. 2020; 13(4): 950-61. doi: 10.1111/1751-7915.13586
  24. Dao Thi V.L., Herbst K., Boerner K. et al. A colorimetric RT-LAMP assay and LAMP-sequencing for detecting SARS-CoV-2 RNA in clinical samples. Sci. Transl. Med. 2020; 12(556). doi: 10.1126/SCITRANSLMED.ABC7075
  25. Хафихзов К.Ф., Петров В.В., Красовитов К.В., Золкина М.В., Акимкин В.Г. Экспресс-диагностика новой коронавирусной инфекции с помощью реакции петлевой изотермической амплификации. Вопр. вирусол. 2021; 66(1): 17-28. https://doi.org/10.36233/0507-4088-42
  26. The principle of LAMP method (Eiken GENOME SITE). http://loopamp.eiken.co.jp/e/lamp/snps_index.html.
  27. Ding S., Chen R., Chen G. et al. One-step colorimetric genotyping of single nucleotide polymorphism using probe-enhanced loop-mediated isothermal amplification (PE-LAMP). Theranostics 2019; 9(13): 3723-31. doi:10. 7150/ thno.33980
  28. Varona M., Anderson J.L. Advances in Mutation Detection Using Loop-Mediated Isothermal Amplification. ACS Omeg. 2021; 6(5): 3463-9. doi:10. 1021/acsomega.0c06093

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2021 Bionika Media

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies