Genetic determinacy of severe COVID-19

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

The review attempts to systematize the currently available data on the influence of polymorphic variants of individual genes and/or mutations of individual genes on the development and severity of viral infection. An analysis of data on genetic determinacy of greater sensitivity to SARS-CoV-2 associated with the receptor phenotype of target cells, as well as the risk of developing a “cytokine storm” is presented.

Full Text

Restricted Access

About the authors

Zaira F. Kharaeva

Kh.M. Berbekov Kabardino-Balkarian State University

Author for correspondence.
Email: irafe@yandex.ru
ORCID iD: 0000-0003-2302-2491

MD, Professor, Head, Department of Microbiology, Virology and Immunology

Russian Federation, Nalchik

Diana V. Degoeva

Kh.M. Berbekov Kabardino-Balkarian State University

Email: degoevadiana69@gmail.com
ORCID iD: 0000-0002-6162-6205

Resident Physician, Department of General Medical Training and Medical Rehabilitation

Russian Federation, Nalchik

Madina Yu. Marzhokhova

Kh.M. Berbekov Kabardino-Balkarian State University

Email: madina010@list.ru
ORCID iD: 0000-0002-5677-5249

MD, Professor, Head, Department of Infectious Diseases

Russian Federation, Nalchik

Asiyat R. Marzhokhova

Kh.M. Berbekov Kabardino-Balkarian State University

Email: asya_marzhoh@mail.ru
ORCID iD: 0000-0003-4207-5919

Cand. Med. Sci, Аssociate Professor, Department of Infectious Diseases

Russian Federation, Nalchik

References

  1. Kucher A.N., Babushkina N.P., Sleptcov A.A., Nazarenko M.S. Genetic Control of Human Infection with SARS-CoV-2. Rus. J. Genet. 2021; 57(6): 627–41. doi: 10.1134/S1022795421050057
  2. Goyal P., Choi J.J., Pinheiro L.C., Schenck E.J., Chen R., Jabri A. et al. Clinical characteristics of Covid-19 in New York City. N. Engl. J. Med. 2020; 382(24): 2372–4. doi: 10.1056/NEJMc2010419
  3. Wang F., Huang S., Gao R., Zhou Y., Lai C., Li Z. et al. Initial whole-genome sequencing and analysis of the host genetic contribution to COVID-19 severity and susceptibility. Cell Discovery. 2020; (6): 83–99. doi: 10.1038/s41421-020-00231-4
  4. Fricke-Galindo I., Falfán-Valencia R. Genetics Insight for COVID-19 Susceptibility and Severity: A Review. Front Immunol. 2021; 12: 622176. doi: 10.3389/fimmu.2021.622176
  5. Hamming I., Cooper M., Haagmans B., Hooper N., Korstanje R., Osterhaus A. et al. The emerging role of ACE2 in physiolo-gy and disease. J. Pathol. 2007; 212(1): 1–11. doi: 10.1002/path.2162
  6. Turk C., Turk S., Temirci E.S., Malkan U.Y., Haznedaroglu I.C. In vitro analysis of the renin–angiotensin system and in-flammatory gene transcripts in human bronchial epithelial cells after infection with severe acute respiratory syndrome coro-navirus. J. Renin Angiotensin Aldosterone Syst. 2020; 21(2): 1470320320928872. doi: 10.1177/1470320320928872
  7. Çelik S.K., Genç G.S., Pişkin N., Açikgöz B., Altinsoy B., İşsiz B.K. et al. Polymorphisms of ACE (I/D) and ACE2 receptor gene (Rs2106809, Rs2285666) are not related to the clinical course of COVID‐19: A case study. J. Med. Virol. 2021; 93(10): 5947–52. doi: 10.1002/jmv.27160
  8. Anastassopoulou C., Gkizarioti Z., Patrinos G.P., Tsakris A. Human genetic factors associated with susceptibility to SARS-CoV-2 infection and COVID-19 disease severity. Hum. Genomics 2020; 14: 40. doi: 10.1186/s40246-020-00290-4
  9. Darbani B. The expression and polymorphism of entry machinery for COVID-19 in human: juxtaposing population groups, gender, and different tissues. Int. J. Environ. Res. Public Health. 2020; 17(10): 3433. doi: 10.3390/ijerph17103433
  10. Hoffmann M., Kleine-Weber H., Schroeder S., Krüger N., Herrler T., Erichsen S. et al. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell. 2020; 181(2): 271–80. doi: 10.1016/j.cell.2020.02.052
  11. Essalmani R., Jain J., Susan-Resiga D., Andréo U., Evagelidis A., Derbali R.M. et al. Distinctive Roles of Furin and TMPRSS2 in SARS-CoV-2 Infectivity. J Virol. 2022; 96(8): e0012822. doi: 10.1128/jvi.00128-22
  12. Senapati S., Banerjee P., Bhagavatula S., Kushwaha P.P., Kumar S. Contributions of human ACE2 and TMPRSS2 in deter-mining host-pathogen interaction of COVID-19. J. Genet. 2021; 100(1): 12. doi: 10.1007/s12041-021-01262-w
  13. Iwata-Yoshikawa N., Okamura T., Shimizu Y., Hasegawa H., Takeda M., Nagata N. TMPRSS2 contributes to virus spread and immunopathology in the airways of murine models after coronavirus infection. J. Virol. 2019; 93(6): e01815-18. doi: 10.1128/JVI.01815-18
  14. Lippi G., Wong J., Henry B.M. Hypertension in patients with coronavirus disease 2019 (COVID-19): a pooled analysis. Pol. Arch. Int. Med. 2020; 130(4): 304–9. doi: 10.20452/pamw.15272
  15. Bilinska K., Jakubowska P., von Bartheld C.S., Butowt R. Expression of the SARS-CoV-2 entry proteins, ACE2 and TMPRSS2, in cells of the olfactory epithelium:
  16. Ma M., Xu Y., Su Y., Ong S.B., Hu X., Chai M. et al. Single-Cell Transcriptome Analysis Decipher New Potential Regulation Mechanism of ACE2 and NPs Signaling Among Heart Failure Patients Infected With SARS-CoV-2. Front Cardiovasc. Med. 2021; (8): 628885. doi: 10.3389/fcvm.2021.628885
  17. Siordia J.A. Epidemiology and clinical features of COVID-19: a review of current literature. J. Clin. Virol. 2020; 127: 104357. doi: 10.1016/j.jcv.2020.104357
  18. Jackson D.J., Busse W.W., Bacharier L.B., Kattan M., O’Connor G.T., Wood R.A. et al. Association of respiratory allergy, asthma, and expression of the SARS-CoV-2 receptor ACE2. J. Allergy Clin. Immunol. 2020; 146(1): 203–6. doi: 10.1016/j.jaci.2020.04.009
  19. Ryan P.M., Caplice N.M. Is adipose tissue a reservoir for viral spread, immune activation and cytokine amplification in COVID-19. Obesity (Silver Spring) 2020; 28(7): 1191–4. doi: 10.1002/oby.22843
  20. Beacon T.H., Su R.C., Lakowski T.M., Delcuve G.P., Davie J.R. SARS-CoV-2 multifaceted interaction with the human host. Part II: Innate immunity response, immunopathology, and epigenetics. IUBMB Life 2020; 72(11): 2331–54. doi: 10.1002/iub.2379
  21. Fallerini C., Daga S., Mantovani S., Benetti E., Picchiotti N., Francisci D. et al. Association of Toll-like receptor 7 variants with life-threatening COVID-19 disease in males: findings from a nested case-control study. Elife 2021; 10: e67569. doi: 10.7554/eLife.67569
  22. Manik M., Singh R.K. Role of toll-like receptors in modulation of cytokine storm signaling in SARS-CoV-2-induced COVID-19. J/ Med/ Virol. 2022; 94(3): 869–77. doi: 10.1002/jmv.27405
  23. Khanmohammadi S., Rezaei N. Role of Toll-like receptors in the pathogenesis of COVID-19. J. Med. Virol. 2021; 93(5): 2735–739. doi: 10.1002/jmv.26826
  24. Velavan T.P., Pallerla S.R., Ruter J., Augustin Y., Kremsner P.G., Krishna S. et al. Host genetic factors determining COVID-19 susceptibility and severity. EBioMedicine 2021; 72: 103629. doi: 10.1016/j.biol.2021.103629
  25. Moreno-Eutimio M.A., López-Macías C., Pastelin-Palacios R. Bioinformatic Analysis and Identification of Single-Stranded RNA Sequences Recognized by TLR7/8 in the SARS-CoV-2, SARS-CoV, and MERS-CoV Genomes. Microbes Infect. 2020; 22: 226–9. doi: 10.1016/j.micinf.2020.04.009
  26. Jaillon S., Berthenet K., Garlanda C. Sexual Dimorphism in Innate Immunity. Clin Rev Allergy Immunol. 2019; 56: 308–21. doi: 10.1007/s12016-017-8648-x
  27. Scheuplein V.A., Seifried J., Malczyk A.H., Miller L., Höcker L., Vergara-Alert J. et al. High secretion of interferons by hu-man plasmacytoid dendritic cells upon recognition of Middle East respiratory syndrome coronavirus. J. Virol. 2015; 89(7): 3859–69. doi: 10.1128/JVI.03607-14
  28. Iturrieta-Zuazo I., Rita C.G., García-Soidán A., de Malet Pintos-Fonseca A., Alonso-Alarcón N. et al. Possible role of HLA class-I genotype in SARS-CoV-2 infection and progression: a pilot study in a cohort of Covid-19 Spanish patients. Clin. Im-munol. 2020; 219: 108572. doi: 10.1016/j.clim.2020.108572
  29. Vietzen H., Zoufaly A., Traugott M., Aberle J., Aberle S.W., Puchhammer-Stöckl E. Deletion of the NKG2C receptor encod-ing KLRC2 gene and HLA-E variants are risk factors for severe COVID-19. Genetics in Medicine 2021; 23: 963– 7. doi: 10.1038/s41436-020-01077-7
  30. Wang W., Zhang W., Zhang J., He J., Zhu F. Distribution of HLA allele frequencies in 82 Chinese individuals with corona-virus disease-2019 (COVID-19). HLA 2020; 96: 194–6. doi: 10.1111/tan.13941
  31. Correale P., Mutti L., Pentimalli F., Baglio G., Saladino R.E., Sileri P. et al. HLAB* 44 and C * 01 Prevalence Correlates with Covid19 Spreading across Italy. Int. J. Mol. Sci. 2020; 21: 5205–17. doi: 10.3390/ijms21155205
  32. Amoroso A., Magistroni P., Vespasiano F., Bella A., Bellino S., Puoti F. et al. HLA and AB0 Polymorphisms May Influence SARS-CoV-2 Infection and COVID-19 Severity. Transplantation 2021; 105: 193–200. doi: 10.1097/TP.0000000000003507
  33. Pisanti S., Deelen J., Gallina A.M., Caputo M., Citro M., Abate M. et al. , Correlation of the two most frequent HLA haplo-types in the Italian population to the differential regional incidence of COVID-19. J. Transl. Med. 2020; 18: 352–61. doi: 10.1186/s12967-020-02515-5
  34. Ng M.H.L., Lau K.M., Li L., Cheng S.H., Chan W.Y., Hui P.K. et al. Association of human-leukocyte-antigen class I (B*0703) and class II (DRB1*0301) genotypes with susceptibility and resistance to the development of severe acute respira-tory syndrome. J. Infect. Dis. 2004; 190(3): 515–8. doi: 10.1086/421523
  35. Lin M., Tseng H.K., Trejaut J.A., Lee H.L., Loo J.H., Chu C.C. et al. Association of HLA class I with severe acute respiratory syndrome coronavirus infection. BMC Med. Genet. 2003; (4): 9. doi: 10.1186/1471-2350-4-9
  36. Chen Y.M.A., Liang S.Y., Shih Y.P., Chen C.Y., Lee Y.M., Chang L. et al. Epidemiological and genetic correlates of severe acute respiratory syndrome coronavirus infection in the hospital with the highest nosocomial infection rate in Taiwan in 2003. J, Clin. Microbiol. 2006; 44(2): 359–65. doi: 10.1128/JCM.44.2.359-365.2006.
  37. Shkurnikov M., Nersisyan S., Jankevic T., Galatenko A., Gordeev I., Vechorko V. et al. Association of HLA Class I Geno-types With Severity of Coronavirus Disease-19. Front. Immunol. 2021; 12: 641900. doi: 10.3389/fimmu.2021.641900
  38. Merad M., Martin J.C. Pathological inflammation in patients with COVID-19: a key role for monocytes and macrophages. Nature Reviews Immunology 2020; 20(6): 355–62. doi: 10.1038/s41577-020-0331-4
  39. Udomsinprasert W., Jittikoon J., Sangroongruangsri S., Chaikledkaew U. Circulating levels of interleukin-6 and interleukin-10, but not tumor necrosis factoralpha, as potential biomarkers of severity and mortality for COVID-19: systematic review with meta-analysis. J. Clin. Immunol. 2021; 41(1): 11–22. doi: 10.1007/s10875-020-00899-z
  40. Sinha P., Calfee C. S., Cherian S., Brealey D., Cutler S., King C. et al. Prevalence of phenotypes of acute respiratory distress syndrome in critically ill patients with COVID-19: a prospective observational study. Lancet Respir. Med. 2020; 8(12): 1209–18. doi: 10.1016/S2213-2600(20)30366-0
  41. Lazear H.M., Schoggins J.W., Diamond M.S. Shared and distinct functions of type I and type III interferons. Immunity 2019; 50(4): 907–23. doi: 10.1016/j.immuni.2019.03.025
  42. Chu H., Chan J. F., Wang Y., Yuen T. T., Chai Y., Hou Y. et al. Comparative Replication and Immune Activation Profiles of SARS-CoV-2 and SARS-CoV in Human Lungs: An Ex Vivo Study With Implications for the Pathogenesis of COVID-19. Clin. Infect. Dis. 2020; 71(6): 1400–9. doi: 10.1093/cid/ciaa410
  43. Blanco-Melo D., Nilsson-Payant B.E., Liu W.C., Uhl S., Hoagland D., Moller R. et al. Imbalanced host response to SARS-CoV-2 drives development of COVID-19. Cell 2020; 181(5): 1036–45. doi: 10.1016/j.cell.2020.04.026
  44. Hadjadj J., Yatim N., Barnabei L., Corneau A., Boussier J., Smith N. et al. Impaired type I interferon activity and inflamma-tory responses in severe COVID-19 patients. Science 2020; 369(6504): 718–24. doi: 10.1126/science.abc6027
  45. Domizio J.D., Gulen M.F., Saidoune F., Thacker V.V., Yatim A., Sharma K. et al. The cGAS-STING pathway drives type I IFN immunopathology in COVID-19. Nature 2022; 603(7899): 145–51. doi: 10.1038/s41586-022-04421-w
  46. Lee J.S., Park S., Jeong H.W., Ahn J.Y., Choi S.J., Lee H. Immunophenotyping of COVID-19 and influenza highlights the role of type I interferons in development of severe COVID- 19. Sci. Immunol. 2020; 5(49): eabd1554. doi: 10.1126/sciimmunol.abd1554
  47. Agwa S.H.A., Kamel M.M., Elghazaly H., Abd Elsamee A.M., Hafez H., Girgis S.A. et al. Association between Interferon-Lambda-3 rs12979860, TLL1 rs17047200 and DDR1 rs4618569 Variant Polymorphisms with the Course and Outcome of SARS-CoV-2 Patients. Genes 2021; (12): 830–42. doi: 10.3390/genes12060830
  48. Majidpoor J., Mortezaee K. Interleukin-6 in SARS-CoV-2 induced disease: Interactions and therapeutic applications. Biomed Pharmacother. 2022; 145: 112419. doi: 10.1016/j.biopha.2021.112419
  49. Strafella C., Caputo V., Termine A., Barati S., Caltagirone C., Giardina E. et al. Investigation of genetic variations of IL6 and IL6r as potential prognostic and pharmacogenetics biomarkers: Implications for covid-19 and neuroinflammatory disorders. Life 2020; (10): 1–10. doi: 10.3390/life10120351
  50. Medetalibeyoglu A., Bahat G., Senkal N., Kose M., Avci K., Sayin G.Y. et al. Mannose binding lectin gene 2 (rs1800450) missense variant may contribute to development and severity of COVID-19 infection. Infection, Genetics and Evolution 2021; 89: 104717. doi: 10.1016/j.meegid.2021.104717

Supplementary files

Supplementary Files
Action
1. JATS XML

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies