Current pathogens of surgical site infections

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

The article presents a review of domestic and foreign sources on the problem of surgical site infections over the past 5 years. The methodology included a systematic search using keywords, selection of peer-reviewed articles, analysis of data on etiology, level of resistance to antibacterial drugs and postoperative complications. The main causative agents of surgical site infections are microorganisms of the ESKAPE group, which have multiple drug resistance. These pathogens are able to adapt to hospital conditions due to mutations, biofilm formation and horizontal gene transfer. To solve this problem, it is necessary to revise measures aimed at preventing the development of the infectious process, conduct active monitoring, which consists of identifying and analyzing pathogenic microorganisms, control over the resistance of pathogens to antimicrobial drugs, strictly justified use of antibiotics in clinical practice and improve antimicrobial chemotherapy regimens.

Full Text

Restricted Access

About the authors

Artyom M. Morozov

Tver State Medical University; City Clinical Hospital No. 7

Author for correspondence.
Email: ammorozovv@gmail.com
ORCID iD: 0000-0003-4213-5379

Cand. Med. Sci., Associate Professor at the Department of General Surgery; Surgeon

Russian Federation, Tver; Tver

Alexey N. Sergeev

Tver State Medical University; City Clinical Hospital No. 7

Email: dr.nikolaevich@mail.ru
ORCID iD: 0000-0002-9657-8063

MD, Associate Professor, Head of the Department of General Surgery; Surgeon

Russian Federation, Tver; Tver

Julia V. Chervinets

Tver State Medical University

Email: julia_chervinec@mail.ru
ORCID iD: 0000-0001-9209-7839

MD, Professor, Head of the Department of Microbiology and Virology with a Course in Immunology

Russian Federation, Tver

Ekaterina A. Fisyuk

Tver State Medical University

Email: feedrfnz@mail.ru
ORCID iD: 0009-0000-0582-7398

4th-Year Student

Russian Federation, Tver

References

  1. Ревишвили А.Ш., Сажин В.П., Оловянный В.Е., Захарова М.А. Современные тенденции в неотложной абдоминальной хирургии в Российской Федерации. Хирургия. Журнал им. Н.И. Пирогова 2020; (7): 6–11. doi: 10.17116/hirurgia20200716. Revishvili A.Sh., Sazhin V.P., Olovyanny V.E., Zakharova M.A. Current trends in emergency abdominal surgery in the Russian Federation. Pirogov Russian Journal of Surgery 2020; (7): 6–11. (In Russ.). doi: 10.17116/hirurgia20200716
  2. Алексеев А.М., Тараско А.Д. Факторы риска при экстренной абдоминальной хирургии. Медицинский алфавит 2023; (35): 48–50. doi: 10.33667/2078-5631-2023-35-48-50. Alekseev A.M., Tarasco A.D. Risk factors in emergency abdominal surgery. The medical alphabet 2023; (35): 48–50. (In Russ.). doi: 10.33667/2078-5631-2023-35-48-50
  3. Zelenitsky S.A. Effective Antimicrobial Prophylaxis in Surgery: The Relevance and Role of Pharmacokinetics-Pharmacodynamics. Antibiotics (Basel) 2023; 12(12): 1738. doi: 10.3390/antibiotics12121738
  4. Jahangir F., Haghdoost A., Moameri H., Okhovati M.. Incidence and Risk Factors of Surgical Site Infection in Abdominal Surgeries: A Scoping Review of Cohort and Case-Control Studies. Iran J Med Sci. 2024; 49(7): 402-412. doi: 10.30476/ijms.2024.100819.3338
  5. Котив Б.Н., Гумилевский Б.Ю., Колосовская Е.Н., Кафтырева Л.А., Орлова Е.С., Иванов Ф.В., Соловьев А.И. Характеристика этиологической структуры инфекции, связанной с оказанием медицинской помощи в многопрофильном стационаре. Вестник Российской Военно-медицинской академии 2020; (1(69)): 7-11. doi: 10.17816/brmma25958. Kotiv B.N., Gumilevsky B.Yu., Kolosovskaya E.N., Kaftyreva L.A., Orlova E.S., Ivanov F.V., Soloviev A.I. Characteristics of the etiological structure of infection associated with the provision of medical care in a multidisciplinary hospital. Bulletin of the Russian Military Medical Academy 2020; (1(69)): 7-11. (In Russ.). doi: 10.17816/brmma25958
  6. Денисюк Н.Б. Эпидемиологические особенности инфекций, связанных с оказанием медицинской помощи, в Оренбургской области. Эпидемиол. инфекц. болезни. Актуал. вопр. 2021; 11(1): 37–42. doi: 10.18565/epidem.2021.11.1.37-42. Denisyuk N.B. Epidemiological features of infections related to medical care in the Orenburg Region. Epidemiology and infectious diseases. 2021; 11(1): 37–42. (In Russ.). doi: 10.18565/epidem.2021.11.1.37-42
  7. Боброва О.П, Фетисов А.О., Зырянов С.К. Микробиологический мониторинг многопрофильной медицинской организации: основа стратегического планирования в рамках реализации эпидемиологической безопасности. Качественная клиническая практика 2023; 4: 79–83. doi: 10.32000/2072-1757-2021-4-79-83. Bobrova O.P., Fetisov A.O., Zyryanov S.K. Microbiological Monitoring of a Multidisciplinary Medical Organization: The Basis for Strategic Planning in the Framework of Epidemiological Safety Implementation. Quality Clinical Practice 2023; (4): 79–83. (In Russ.). doi: 10.32000/2072-1757-2021-4-79-83
  8. Campos J.C., Antunes L.C., Ferreira R.B. Global priority pathogens: virulence, antimicrobial resistance and prospective treatment options. Future Microbiol. 2020; 15: 649–677. doi: 10.2217/fmb-2019-0333
  9. Hu Y., Wang W., Nguyen SV., Macori G., Li F., Fanning S. Editorial: High-level antimicrobial resistance or hypervirulence in emerging and re-emerging «super-bug» foodborne pathogens: detection, mechanism, and dissemination from omics insights. Front. Microbiol. 2024; 15: 1459601. doi: 10.3389/fmicb.2024.1459601
  10. Miller W.R., Arias C.A. ESKAPE pathogens: antimicrobial resistance, epidemiology, clinical impact and therapeutics. Nat. Rev. Microbiol. 2024; 22(10): 598–616. doi: 10.1038/s41579-024-01054-w
  11. Abban M.K., Ayerakwa E.A., Mosi L., Isawumi A. The burden of hospital acquired infections and antimicrobial resistance. Heliyon 2023; 9(10): 20561. doi: 10.1016/j.heliyon.2023.e20561
  12. Liu Z., Zhang X., Zhai Q. Clinical investigation of nosocomial infections in adult patients after cardiac surgery. Medicine (Baltimore) 2021; 100(4): 24162. doi: 10.1097/MD.0000000000024162
  13. Litwin A., Fedorowicz O., Duszynska W. Characteristics of Microbial Factors of Healthcare-Associated Infections Including Multidrug-Resistant Pathogens and Antibiotic Consumption at the University Intensive Care Unit in Poland in the Years 2011–2018. Int. J. Environ. Res. Public Health 2020; 17(19): 6943. doi: 10.3390/ijerph17196943
  14. Sartelli M., Coccolini F., Labricciosa FM., Al Omari AH., Bains L., Baraket O. et al. Surgical Antibiotic Prophylaxis: A Proposal for a Global Evidence-Based Bundle. Antibiotics (Basel) 2024; 13(1): 100. doi: 10.3390/antibiotics13010100
  15. Carestia M., Andreoni M., Buonomo E., Ciccacci F., De Angelis L., De Carolis G. et al A novel, integrated approach for understanding and investigating Healthcare Associated Infections: A risk factors constellation analysis. PLoS One 2023; 18(3): 0282019. doi: 10.1371/journal.pone.0282019
  16. Морозов А.М., Кадыков В.А., Аскеров Э.М., Пенязь Е.В., Попова М.О., Беляк М.А. Гнойно-септические осложнения хирургической патологии органов средостения. Вестник медицинского института «РЕАВИЗ»: Реабилитация, Врач и Здоровье 2023; 13(2): 82–87. doi: 10.20340/vmi-rvz.2023.2.CLIN.4. Morozov A.M., Kadykov V.A., Askerov E.M., Penyaz E.V., Popova M.O., Belyak M.A. Purulent-septic complications of surgical pathology of mediastinal organs. Bulletin of the medical institute «REAVIZ»: Rehabilitation, Doctor and Health 2023; 13(2): 82–87. (In Russ.). doi: 10.20340/vmi-rvs.2023.2.CLEAN.4
  17. Аубакирова А.Т., Абдилова Г.Б., Сатылганкызы Г., Катаева К.Т., Бекмухамедова А.Е. Микробиологический мониторинг внутрибольничной инфекции в хирургическом стационаре. Вестник Казахского Национального медицинского университета 2021; (3): 235–239. doi: 10.53065/kaznmu.2021.43.89.046. Aubakirova A.T., Abdilova G.B., Satylgankyzy G., Kataeva K.T., Bekmukhamedova A.E. Microbiological monitoring of nosocomial infection in a surgical hospital. Bulletin of the Kazakh National Medical University 2021; (3): 235–239. (In Russ.). doi: 10.53065/kaznmu.2021. 43.89.046
  18. Tomic-Canic M., Burgess J.L., O’Neill K.E., Strbo N., Pastar I. Skin Microbiota and its Interplay with Wound Healing. Am. J. Clin. Dermatol. 2020; 21(1): 36–43. doi: 10.1007/s40257-020-00536-w
  19. Митряшов К.В., Охотина С.В., Шмагунова Е.В., Киселев А.Ю., Усов В.В. Сроки контаминации ожоговых ран нозокомиальной флорой. Тихоокеанский медицинский журнал 2020; 1(79): 28–31. doi: 10.34215/1609-1175-2020-1-28-31. Mitryashov K.V., Okhotina S.V., Shmagunova E.V., Kiselev A. Yu., Usov V.V. Timing of Contamination of Burn Wounds by Nosocomial Flora. Pacific Medical Journal 2020; 1(79): 28–31. (In Russ.). doi: 10.34215/1609-1175-2020-1-28-31
  20. Ярец Ю.И. Патогенный потенциал бактерий группы ESKAPE, выделенных из ран: характеристика фено- и генотипических маркеров и возможность их практического применения. Журнал Гродненского государственного медицинского университета 2022; 4(20): 400–413. doi: 10.25298/2221-8785-2022-20-4-400-413. Yarets Y.I. Pathogenic potential of ESKAPE group bacteria isolated from wounds: characterization of pheno- and genotypic markers and the possibility of their practical application. Journal of the Grodno State Medical University 2022; 4(20): 400–413. (In Russ.). doi: 10.25298/2221-8785-2022-20-4-400-413
  21. Ярец Ю.И., Шевченко Н.И., Еремин В.Ф. Методология микробиологического посева раневого отделяемого в рамках современных представлений о диагностике инфекционного процесса. Лабораторная служба 2021; 10(3): 33–42. doi: 10.17116/labs 20211003133. Yarets Yu.I., Shevchenko N.I., Eremin V.F. Methodology of microbiological analysis of wound swabs within the framework of modern concepts of wound infection process. Laboratory Service 2021; 10(3): 33–42. (In Russ.). doi: 10.17116/labs20211003133
  22. Морозов А.М., Аскеров Э.М., Алоян С.А., Бутнару А.П., Морозова А.Д. Триггерные факторы развития инфекции области хирургического вмешательства. Врач 2024; 35(5): 78–84. doi: 10.29296/25877305-2024-05-14. Morozov A.M., Askerov E.M., Aloyan S.A., Butnaru A.P., Morozova A.D. Trigger factors of infection development in the field of surgical intervention. Doctor 2024; 35(5): 78–84. (In Russ.). doi: 10.29296/25877305-2024-05-14
  23. Яковлева Е.Е., Белецкая Ю.А., Яковлев А.В., Шабанов П.Д. Антибактериальная резистентность Klebsiella pneumoniae и современные подходы к терапии нозокомиальных инфекций у новорожденных. Вестник Смоленской государственной медицинской академии 2022; 21(2): 54–60. doi: 10.37903/vsgma.2022.2.8. Yakovleva E.E., Beletskaya Yu.A., Yakovlev A.V., Shabanov P.D. Antibacterial resistance Klebsiella pneumoniae and modern approaches to the treatment of nosocomial infections in newborns. Bulletin of the Smolensk State Medical Academy 2022; 21(2): 54–60. (In Russ.) doi: 10.37903/vsgma.2022.2.8
  24. Хабалова Н.Р., Лялина Л.В., Кафтырева Л.А. Результаты эпидемиологического и микробиологического мониторинга инфекций, связанных с оказанием медицинской помощи, в Республике Северная Осетия ― Алания. Здоровье населения и среда обитания 2022; 30(7): 57–65. doi: 10.35627/2219-5238/2022-30-7-57-65. Khabalova N.R., Lyalina L.V., Kaftyreva L.A. Results of Epidemiological and Microbiological Monitoring of Healthcare-Associated Infections in the Republic of North Ossetia – Alania. Public Health and Environment 2022; 30(7): 57–65. (In Russ.). doi: 10.35627/2219-5238/2022-30-7-57-65
  25. Yang Y., Yang Y., Chen G., Lin M., Chen Y., He R. et al. Molecular characterization of carbapenem-resistant and virulent plasmids in Klebsiella pneumoniae from patients with bloodstream infections in China. Emerg. Microbes Infect. 2021; 10(1): 700–709. doi: 10.1080/22221751.2021.1906163
  26. Wyres K.L., Lam M.M.C., Holt K.E. Population genomics of Klebsiella pneumoniae. Nat. Rev. Microbiol. 2020; 18(6): 344–359. doi: 10.1038/s41579-019-0315-1.
  27. Isogai M., Kawamura K., Yagi T., Kayama S., Sugai M., Doi Y. et al. Evaluation of Klebsiella pneumoniae pathogenicity through holistic gene content analysis. Microb. Genom. 2024; 10(9): 001295. doi: 10.1099/mgen.0.001295
  28. Jin X., Chen Q., Shen F., Jiang Y., Wu X., Hua X. et al. Resistance evolution of hypervirulent carbapenem-resistant Klebsiella pneumoniae ST11 during treatment with tigecycline and polymyxin. Emerg. Microbes Infect. 2021; 10(1): 1129–1136. doi: 10.1080/22221751.2021.1937327
  29. Choby J.E., Howard-Anderson J., Weiss D.S. Hypervirulent Klebsiella pneumoniae ― clinical and molecular perspectives. J. Int. Med. 2020; 287(3): 283–300. doi: 10.1111/joim.13007
  30. Do A.D., Quang H.P., Phan Q.K. Probiotic cell-free supernatant as effective antimicrobials against Klebsiella pneumoniae and reduce antibiotic resistance development. Int. Microbiol. 2025; 28(4): 623–632. doi: 10.1007/s10123-024-00575-x
  31. Thuy T.T.D., Lu H.F., Bregente C.J.B., Huang F.A., Tu P.C., Kao C.Y. Characterization of the broad-spectrum antibacterial activity of bacteriocin-like inhibitory substance-producing probiotics isolated from fermented foods. BMC Microbiol. 2024; 24(1): 85. doi: 10.1186/s12866-024-03245-0
  32. Zeng Y., Li T., Chen X., Fang X., Fang C., Liang X. et al. Oral administration of Lactobacillus plantarum expressing aCD11c modulates cellular immunity alleviating inflammatory injury due to Klebsiella pneumoniae infection. BMC Vet. Res. 2024; 20(1): 399. doi: 10.1186/s12917-024-04248-9
  33. Cheung G.Y.C., Bae J.S., Otto M. Pathogenicity and virulence of Staphylococcus aureus. Virulence 2021; 12(1): 547–569. doi: 10.1080/21505594.2021.1878688
  34. Перфильева Д.Ю., Мирошниченко А.Г., Куликов Е.С., Бойков В.А., Нестерович С.В., Перфильев В.Ю. Внутрибольничные инфекции: взгляд на проблему в условиях глобальной угрозы антибиотикорезистентности (обзор). Сибирский журнал клинической и экспериментальной медицины 2024; 39(1): 28–37. doi: 10.29001/2073-8552-2024-39-1-28-37. Perfileva D.Yu., Miroshnichenko A.G., Kulikov E.S., Bokov V.A., Nesterovich S.V., Perfilyev V.Y. Nosocomial infections: a view on the problem in the context of the global threat of antibiotic resistance (review). Siberian Journal of Clinical and Experimental Medicine 2024; 39(1): 28–37. (In Russ.). doi: 10.29001/2073-8552-2024-39-1-28-37
  35. Скачкова Т.С., Головешкина Е.Н., Абросимова О.А., Тутельян А.В., Акимкин В.Г. Уровень и структура заболеваемости инфекциями, связанными с оказанием медицинской помощи, обусловленными стафилококками, в 2018–2021 гг. Эпидемиол. инфекц. болезни. Актуал. вопр. 2023; 13(2): 28–33. doi: 10.18565/epidem.2023.13.2.28-33. Skachkova T.S., Goloveshkina E.N., Abrosimova O.A., Tutelyan A.V., Akimkin V.G. Level and Structure of Morbidity of Healthcare-Associated Infections Caused by Staphylococci in 2018–2021. Epidemiology and infectious diseases. Current item 2023; 13(2): 28–33. (In Russ.) doi: 10.18565/epidem.2023.13.2.28-33
  36. Guo Y., Song G., Sun M., Wang J., Wang Y. Prevalence and Therapies of Antibiotic-Resistance in Staphylococcus aureus. Front. Cell. Infect. Microbiol. 2020; (10): 107. doi: 10.3389/fcimb.2020.00107
  37. Sastalla I., Kwon K., Huntley C., Taylor K., Brown L., Samuel T. et al. NIAID Workshop Report: Systematic Approaches for ESKAPE Bacteria Antigen Discovery. Vaccines (Basel) 2025; 13(1): 87. doi: 10.3390/vaccines13010087
  38. Mlynarczyk-Bonikowska B., Kowalewski C., Krolak-Ulinska A., Marusza W. Molecular Mechanisms of Drug Resistance in Staphylococcus aureus. Int. J. Mol. Sci. 2022; 23(15): 8088. doi: 10.3390/ijms23158088
  39. Kunnath A.P., Suodha Suoodh M., Chellappan D.K., Chellian J., Palaniveloo K. Bacterial Persister Cells and Development of Antibiotic Resistance in Chronic Infections: An Update. J. Biomed. Sci. 2024; 81: 12958. doi: 10.3389/bjbs.2024.12958
  40. Eisenreich W., Rudel T., Heesemann J., Goebel W. Link Between Antibiotic Persistence and Antibiotic Resistance in Bacterial Pathogens. Front. Cell. Infect. Microbiol. 2022; (12): 900848. doi: 10.3389/fcimb.2022.900848
  41. Purkayastha D.S., Mallick A.A., Das G., Purkayastha S.S. Inguinal hernia mesh infections: Chronic challenges, atypical pathogens and lessons in sterilisation. Trop. Doct. 2025; 55(2): 134–138. doi: 10.1177/00494755241313152
  42. Zafer M.M., Mohamed G.A., Ibrahim S.R.M., Ghosh S., Bornman C., Elfaky M.A. Biofilm-mediated infections by multidrug-resistant microbes: a comprehensive exploration and forward perspectives. Arch. Microbiol. 2024; 206: 101. doi: 10.1007/s00203-023-03826-z
  43. Devanga Ragupathi N.K., Veeraraghavan B., Karunakaran E., Monk P.N. Editorial: Biofilm-mediated nosocomial infections and its association with antimicrobial resistance: Detection, prevention, and management. Front. Med. (Lausanne). 2022; 9: 987011. doi: 10.3389/fmed.2022.987011
  44. Roy S., Chowdhury G., Mukhopadhyay A.K., Dutta S., Basu S. Convergence of Biofilm Formation and Antibiotic Resistance in Acinetobacter baumannii Infection. Front. Med. (Lausanne) 2022; 9: 793615. doi: 10.3389/fmed.2022.793615
  45. Marino A., Augello E., Stracquadanio S., Bellanca C.M., Cosentino F., Spampinato S. et al. Unveiling the Secrets of Acinetobacter baumannii: Resistance, Current Treatments, and Future Innovations. Int. J. Mol. Sci. 2024; 25(13): 6814. doi: 10.3390/ijms25136814
  46. Borges K.C.M., Kipnis A., Junior Neves J.B., Junqueira-Kipnis A.P. Promising New Targets for the Treatment of Infections Caused by Acinetobacter baumannii: A Review. Curr. Drug Targets 2024; 25(14): 971–986. doi: 10.2174/011389450131926924081906024
  47. Ibrahim S., Al-Saryi N., Al-Kadmy I.M.S., Aziz S.N. Multidrug-resistant Acinetobacter baumannii as an emerging concern in hospitals. Mol. Biol. Rep. 2021; 48(10): 6987–6998. doi: 10.1007/s11033-021-06690-6
  48. Castanheira M., Mendes R.E., Gales A.C. Global Epidemiology and Mechanisms of Resistance of Acinetobacter baumannii-calcoaceticus Complex. Clin. Infect. Dis. 2023; 76(2): S166–S178. doi: 10.1093/cid/ciad109
  49. Lucidi M., Visaggio D., Migliaccio A., Capecchi G., Visca P., Imperi F. et al. Pathogenicity and virulence of Acinetobacter baumannii: Factors contributing to the fitness in healthcare settings and the infected host. Virulence 2024; 15(1): 2289769. doi: 10.1080/21505594.2023.2289769
  50. Franzone J.P., Mackow N.A., van Duin D. Current treatment options for pneumonia caused by carbapenem-resistant Acinetobacter baumannii. Curr. Opin. Infect. Dis. 2024; 37(2): 137–143. doi: 10.1097/QCO.0000000000001001
  51. Сергеев А.Н., Морозов А.М., Аскеров Э.М., Сергеев Н.А., Армасов А.Р., Исаев Ю.А. Методы локальной антимикробной профилактики инфекции области хирургического вмешательств. Казанский медицинский журнал 2020; 101(2): 243–248. doi: 10.17816/KMJ2020-243. Sergeev A.N., Morozov A.M., Askerov E.M., Sergeev N.A., Amosov A.R., Isaev Yu.A. Methods of local antimicrobial prevention of infection in the field of surgical interventions. Kazan Medical Journal 2020; 101(2): 243–248. (In Russ.). doi: 10.17816/KMJ2020-243
  52. Ramirez M.S., Bonomo R.A., Tolmasky M.E. Carbapenemases: Transforming Acinetobacter baumannii into a Yet More Dangerous Menace. Biomolecules 2020; 10(5): 720. doi: 10.3390/biom10050720
  53. Mea H.J., Yong P.V.C., Wong E.H. An overview of Acinetobacter baumannii pathogenesis: Motility, adherence and biofilm formation. Microbiol. Res. 2021; 247: 126722. doi: 10.1016/j.micres.2021.126722
  54. Traglia G.M., Pasteran F., Escalante J., Nishimura B., Tuttobene M.R., Subils T. et al. Genomic Comparative Analysis of Two Multi-Drug Resistance (MDR) Acinetobacter baumannii Clinical Strains Assigned to International Clonal Lineage II Recovered Pre- and Post-COVID-19 Pandemic. Biology (Basel) 2023; 12(3): 358. doi: 10.3390/biology12030358
  55. Zukowska A., Zukowski M. Surgical Site Infection in Cardiac Surgery. J. Clin. Med. 2022; 11(23): 6991. doi: 10.3390/jcm11236991
  56. Uberoi A., McCready-Vangi A., Grice E.A. The wound microbiota: microbial mechanisms of impaired wound healing and infection. Nat. Rev.Microbiol. 2024; 22(8): 507–521. doi: 10.1038/s41579-024-01035-z
  57. Морозов А.М., Морозова А.Д., Беляк М.А., Замана Ю.А., Жуков С.В. Инфекции, связанные с оказанием медицинской помощи. Современный взгляд на проблему (обзор литературы). Вестник новых медицинских технологий 2022; 16(4): 107–116. doi: 10.24412/2075-4094-2022-4-3-3. Morozov A.M., Morozova A.D., Belyak M.A., Zamana Yu.A., Zhukov S.V. Infections related to medical care. A modern view of the problem (literature review). Bulletin of New Medical Technologies 2022; 16(4): 107–116. (In Russ.). doi: 10.24412/2075-4094-2022-4-3-3
  58. Morsli M., Salipante F., Magnan C., Dunyach-Remy C., Sotto A., Lavigne J.P. Direct metagenomics investigation of non-surgical hard-to-heal wounds: a review. Ann. Clin. Microbiol. Antimicrob. 2024; 23(1): 39. doi: 10.1186/s12941-024-00698-z
  59. Jiang X., Guo H., Sun J., Guan Y., Xie Z. Diagnostic value of metagenomic next-generation sequencing for bronchoalveolar lavage diagnostics in patients with lower respiratory tract infections. Diagn. Microbiol. Infect. Dis. 2025; 111(2): 116620. doi: 10.1016/j.diagmicrobio.2024.116620
  60. Dexter F., Epstein R.H., Loftus R.W. Quantifying and Interpreting Inequality in Surgical Site Infections per Quarter Among Anesthetizing Locations and Specialties. Cureus 2023; 15(3): e36878. doi: 10.7759/cureus.36878
  61. Franklin D., Jeremiah R.B., Russell T.W., Randy W.L. The efficacy of multifaceted versus single anesthesia work area infection control measures and the importance of surgical site infection follow-up duration. J. Clin. Anesth. 2023; 25: 111043. doi: 10.1016/j.jclinane.2022.111043
  62. Wall R.T., Datta S., Dexter F., Ghyasi N., Robinson A.D.M., Persons D. et al. Effectiveness and feasibility of an evidence-based intraoperative infection control program targeting improved basic measures: a post-implementation prospective case-cohort study. J. Clin. Anesth. 2022; 77: 110632. doi: 10.1016/j.jclinane.2021.110632
  63. Nourry J., Chevalier P., Laurenceau E., Cattoen X., Bertrand X., Peres B., et al. Whole-cell aptamer-based techniques for rapid bacterial detection: Alternatives to traditional methods. J. Pharm. Biomed. Anal. 2025; 25: 116661. doi: 10.1016/j.jpba.2025.116661
  64. Peng H., Chen I.A., Qimron U. Engineering Phages to Fight Multidrug-Resistant Bacteria. Chem. Rev. 2025; 125(2): 933–971. doi: 10.1021/acs.chemrev.4c00681
  65. Li S., Wei B., Xu L., Cong C., Murtaza B., Wang L. et al. In vivo efficacy of phage cocktails against carbapenem resistance Acinetobacter baumannii in the rat pneumonia model. J. Virol. 2024; 98(7): e0046724. doi: 10.1128/jvi.00467-24
  66. Gang J., Chen H., Keyi F., Yingying L., Linlin W. How Nanoparticles Help in Combating Chronic Wound Biofilms Infection? Int. J. Nanomedicine 2024; 19: 11883–11921 doi: 10.2147/IJN.S484473
  67. Yuanyuan L., Qinping Y., Ruiwen Z., Xinyu W., Khadija R., Min T. et al. Polyethyleneimine surface-modified silver-selenium nanocomposites for anti-infective treatment of wounds by disrupting biofilms. Biomed. Mater. 2024; 19(4). doi: 10.1088/1748-605X/ad4e84
  68. Xin H., Jing S., Rong-Xing M., Qi Q., Chun-shan Q., Jun L. et al. Rough Ag2SH-CeO2 photonic nanocomposites for effective eradication of drug-resistant bacteria and improved healing of infected cutaneous wounds. Colloids and Surfaces B: Biointerfaces 2024; 243: 114119. doi: 10.1016/j.colsurfb.2024.114119

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Bionika Media