OPTIMIZATION OF MEASURES TO PREVENT SEPTIC COMPLICATIONS OF HEALTHCARE-ASSOCIATED INFECTIONS THROUGH SEARCH FOR BIOMARKERS OF CELLS OF THE IMMUNE SYSTEM


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

The paper describes approaches to developing the informative biomarkers of the cell surface phenotype of innate immunity system cells and their secreted products to identify groups of patients at high risk for life-threatening complications of healthcare-associated bacterial and viral infections (HCAI), such as sepsis and systemic inflammatory response syndrome. The groups of potential biomarkers selected to be studied include the markers of immune system cells (HLA-DR, CD88, CD14, and CD33) that do not belong to the lymphoid series (monocytic and myeloid cells). It is suggested that the quantification of the profile of biomarkers (the so-called immune phenomenon) will assist in identifying patients at the highest risk for severe, life-threatening complications of HCAI. The results of the study may be used as the basis for the substantiation of a personified approach to implementing expensive preventive or early therapeutic measures to reduce deaths from HCAI complications (viral and bacterial infections).

Full Text

Restricted Access

About the authors

A. V TUTELYAN

Central Research Institute of Epidemiology, Russian Inspectorate for the Protection of Consumer Rights and Human Welfare

Email: bio-tav@yandex.ru

V. M PISAREV

Central Research Institute of Epidemiology, Russian Inspectorate for the Protection of Consumer Rights and Human Welfare

V. G AKIMKIN

Research Institute of Disinfectology, Russian Inspectorate for the Protection of Consumer Rights and Human Welfare

N. I BRIKO

I.M. Sechenov First Moscow State Medical University

E. B BRUSINA

Kemerovo State Medical Academy

L. P ZUEVA

I. I. Mechnikov Saint Petersburg State Medical Academy

V. I POKROVSKY

Central Research Institute of Epidemiology, Russian Inspectorate for the Protection of Consumer Rights and Human Welfare

References

  1. Liappis A.P., Gibbs K.W., Nylen E.S. Exogenous procalcitonin evokes a pro-inflammatory cytokine response. Inflamm. Res. 2011; 60(2): 203-207.
  2. Claus R.A., Otto G.P., Deigner H.P., Bauer M. Approaching clinical reality: markers for monitoring systemic inflammation and sepsis. Curr. Mol. Med. 2010; 10 (2): 227-235.
  3. Nguyen H.B., Loomba M., Yang J.J. et al. Early lactate clearance is associated with biomarkers of inflammation, coagulation, apoptosis, organ dysfunction and mortality in severe sepsis and septic shock. J. Inflamm. 2010; 7: 6-16.
  4. Gibot S., Massin F., Cravoisy A. et al. Highmobility group box 1 protein plasma concentrations during septicshock. Intensive Care Med. 2007; 33: 1347-1353.
  5. Suda K., Takeuchi H., Ishizaka A., Kitagawa Y. High-mobility-group box chromosomal protein 1 as a new target for modulating stress response. Surg. Today. 2010; 40 (7): 592-601.
  6. Phua J., Koay E.S., Lee K.H. Lactate, procalcitonin, and amino-terminal pro-B-type natriuretic peptide versus cytokine measurements and clinical severity scores for prognostication in septic shock. Shock 2008; 29: 328-333.
  7. Gori C.S., Magrini L., Travaglino F., Di Somma S. Role of biomarkers in patients with dyspnea. Eur. Rev. Med. Pharmacol. Sci. 2011; 15 (2): 229-240.
  8. Standage S.W., Wong H.R. Biomarkers for pediatric sepsis and septic shock. Expert Rev. Anti Infect. Ther. 2011; 9 (1): 71-79.
  9. Reinhart K., Hartog C.S. Biomarkers as a guide for antimicrobial therapy. Int. J. Antimicrob. Agents 2010; 36 (Suppl 2): S17-S21.
  10. Pierrakos C., Vincent J.L. Sepsis biomarkers: a review. Crit Care 2010; 14 (1): R15.
  11. Mancini N., Carletti S., Ghidoli N. The era of molecular and other non-culture-based methods in diagnosis of sepsis. Clin. Microbiol. Rev. 2010 ; 23 (1): 235-251.
  12. Nupponen I., Andersson S., Jarvenpaa A.L. et al. Neutrophil CD11b expression and circulating interleukin-8 as diagnostic markers for early-onset neonatal sepsis. Pediatrics 2001; 108: E12.
  13. Nuutila J., Hohenthal U., Laitinen I. et al. Simultaneous quantitative analysis of FcgammaRI (CD64) expression on neutrophils and monocytes: a new, improved way to detect infections. J. Immunol. Methods 2007; 328: 189-200.
  14. Nuutila J. The novel applications of the quantitative analysis of neutrophil cell surface FcgammaRI (CD64) to the diagnosis of infectious and inflammatory diseases. Curr. Opin. Infect. Dis. 2010; 23( 3): 268-274.
  15. Cid J., Garcia-Pardo G., Aguinaco R et al. Neutrophil CD64: diagnostic accuracy and prognostic value in patients presenting to the emergency department. Eur. J. Clin. Microbiol. Infect. Dis. 2011; 20: 178-182.
  16. Chéron A., Monneret G., Landelle C. et al. Low monocytic HLA-DR expression and risk of secondary infection. Ann. Fr. Anesth. Reanim. 2010; 29 (5): 368-376.
  17. Cheron A., Floccard B., Allaouchiche B. et al. Lack of recovery in monocyte human leukocyte antigen-DR expression is independently associated with the development of sepsis after major trauma. Crit. Care 2010; 14 (6): R208.
  18. Strohmeyer J.C., Blume C., Meisel C. et al. Standardized immune monitoring for the prediction of infections after cardiopulmonary bypass surgery in risk patients. Cytometry B Clin. Cytom. 2003; 53 (1): 54-62.
  19. Huber-Lang M., Sarma J. V., Rittirsch D. et al. Changes in the novel orphan, C5a receptor (C5L2), during experimental sepsis and sepsis in humans. J. Immunol. 2005; 174: 1104-1110.
  20. Ward P.A. The harmful role of c5a on innate immunity in sepsis. J. Innate Immun. 2010; 2 (5): 439-445.
  21. Schaaf B., Luitjens K., Goldmann T. et al. Mortality in human sepsis is associated with downregulation of Toll-like receptor 2 and CD14 expression on blood monocytes. Diagn. Pathol. 2009; 16 (4): 12.
  22. Guignant C., Lepape A., Huang X. et al. Programmed death-1 levels correlate with increased mortality, nosocomial infection and immune dysfunctions in septic shock patients. Crit. Care. 2011; 15 (2): R99.
  23. Maghraby S.M., Moneer M.M., Ismail M.M. et al. The diagnostic value of C-reactive protein, interleukin-8, and monocyte chemo tactic protein in risk stratification of febrile neutropenic children with hematologic malignancies. J. Pediatr. Hematol. Oncol. 2007; 29: 131-136.
  24. Fujishima S., Sasaki J., Shinozawa Y. et al. Serum MIP-1 alpha and IL-8 in septic patients. Intensive Care Med. 1996; 22: 1169-1175.
  25. Heper Y., Akalin E.H., Mistik R. et al. Evaluation of serum C-reactive protein, procalcitonin, tumor necrosis factor alpha, and interleukin-10 levels as diagnostic and prognostic parameters in patients with community-acquired sepsis, severe sepsis, and septic shock. Eur. J. Clin. Microbiol. Infect. Dis. 2006; 25: 481-491.
  26. Wang C.H., Gee M.J., Yang C., Su Y.C. A new model for outcome prediction in intra-abdominal sepsis by the linear discriminant function analysis of IL-6 and IL-10 at different heart rates. J. Surg. Res. 2006; 132: 46-51.
  27. Marchant A., Alegre M.L., Hakim A. et al. Clinical and biological significance of interleukin-10 plasma levels in patients with septic shock. J. Clin. Immunol. 1995; 15: 266-273.
  28. Pinsky M.R., Vincent J.L., Deviere J. et al. Serum cytokine levels in human septic shock. Relation to multiple-system organ failure and mortality. Chest 1993; 103: 565-575.
  29. Sherwin C., Broadbent R., Young S. Utility of interleukin-12 and interleukin-10 in comparison with other cytokines and acute-phase reactants in the diagnosis of neonatal sepsis. Am. J. Perinatol. 2008; 25: 629-636.
  30. Ng P.C., Li K., Leung T.F. et al. Early prediction of sepsis-induced disseminated intravascular coagulation with interleukin-10, interleukin-6, and RANTES in preterm infants. Clin. Chem. 2006; 52 (6): 1181-1189.
  31. Ng P.C., Li K., Chui K.M. et al. IP-10 is an early diagnostic marker for identification of late-onset bacterial infection in preterm infants. Pediatr. Res. 2007; 61: 93-98.
  32. Fotopoulos S., Mouchtouri A., Xanthou G. et al. Inflammatory chemokine expression in the peripheral blood of neonates with perinatal asphyxia and perinatal or nosocomial infections. Acta Paediatr. 2005; 94 (6): 800-806.
  33. Gibot S., Cravoisy A., Dupays R. Combined measurement of procalcitonin and soluble TREM-1 in the diagnosis of nosocomial sepsis. Scand. J. Infect. Dis. 2007; 39 (6-7): 604-608.
  34. Rintala E.M., Aittoniemi J., Laine S. et al. Early identification of bacteremia by biochemical markers of systemic inflammation. Scand. J. Clin. Lab. Invest. 20014 61: 523-530.
  35. Saukkonen K., Lakkisto P., Pettilä V. et al. Cell-free plasma DNA as a predictor of outcome in severe sepsis and septic shock. Clin Chem. 2008; 54 (6): 1000-1007.
  36. Saukkonen K., Lakkisto P., Varpula M. et al. Association of cell-free plasma DNA with hospital mortality and organ dysfunction in intensive care unit patients. Intensive Care Med. 2007; 33 (9): 1624-1627.
  37. Rhodes A., Wort S.J., Thomas H. et al. Plasma DNA concentration as a predictor of mortality and sepsis in critically ill patients. Crit. Care. 2006; 10 (2): R60.
  38. Сепсис: классификация, клинико-диагностическая концепция и лечение: Практич. руководство / Под ред. В.С. Савельева, Б.Р. Гельфанда. М.: Медицинское информационное агентство, 2010.
  39. Аджамов Б.М. Роль прокальцитонина в определении вида возбудителя инфекционного процесса. Инфекции в хирургии 2010; 8 (3) 5-8.
  40. Тест на прокальцитонин: алгоритмы применения и новые возможности / Под ред. Н.В. Белобородова, Д.А. Попова. М., 2008.
  41. Rosenthal V.D., Maki D.G., Rodrigues C. et al. International nosocomial infection control consortium investigators. Impact of international nosocomial infection control consortium (INICC) strategy on central line-associated bloodstream infection rates in the intensive care units of 15 developing countries. Infect. Control Hosp. Epidemiol. 2010; 31 (12): 1264-1272.
  42. Nobre V., Harbarth S., Graf J.D. et al. Use of procalcitonin to shorten antibiotic treatment duration in septic patients: a randomized trial. Am. J. Respir. Crit. Care Med. 2008; 177: 498-505.
  43. Briel M., Schuetz P., Mueller B. et al. Procalcitonin-guided antibiotic use vs a standard approach for acute respiratory tract infections in primary care. Arch. Int. Med. 2008; 168: 2000-2007.
  44. Zakariah A.N., Cozzi S.M., Van Nuffelen M. Combination of biphasic transmittance waveform with blood procalcitonin levels for diagnosis of sepsis in acutely ill patients. Crit. Care Med. 2008; 36 (5): 1507-1512.
  45. Deitcher S.R., Eisenberg P.R. Elevated concentrations of crosslinked fibrin degradation products in plasma. An early marker of gram-negative bacteremia. Chest 1993; 103 (4): 1107-1112.
  46. Lehmann L.E., Book M., Hartmann W. et al. A MIF haplotype is associated with the outcome of patients with severe sepsis: a case control study. J. Trans. Med. 2009; 26 (7): 100.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2012 Bionika Media

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies