Possibilities of biological and mathematical modeling of infection caused by Epstein-Barr virus


Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Acesso é pago ou somente para assinantes

Resumo

The review presents the existing biological and mathematical models of the infectious disease process caused by Epstein-Barr virus (EBV). The existence of EBV in the host can be presented by a cycle consisting of 6 consecutive stages, each of which has its own independent variant of immune regulation. The phenomenon of virus shedding into the biological fluids, into the saliva in particular, which has been modeled with differential equations, is described. The mathematical modeling makes it possible to supplement the existing knowledge about the pathogenesis of the infectious disease process caused by Epstein-Barr virus, as well as to determine the threshold levels of virus shedding into the nonsterile environments for the diagnosis of active infections.

Texto integral

Acesso é fechado

Sobre autores

A. Permyakova

Academician E.A. Vagner Perm State Medical University, Ministry of Health of Russia

Email: derucheva@mail.ru

A. Sazhin

OOO «LOR Plus» Medical Center

Email: info@lor-plus.ru

E. Melekhina

Central Research Institute of Epidemiology, Russian Federal Service for Supervision of Consumer Rights Protection and Human WellBeing

Email: e.melekhina@mail.ru

A. Gorelov

Central Research Institute of Epidemiology, Russian Federal Service for Supervision of Consumer Rights Protection and Human WellBeing

Email: crie@pcr.ru

Bibliografia

  1. Кирьянов Б.Ф., Токмачев М.С. Математические модели в здравоохранении. Учебное пособие. Великий Новгород: НовГУ им. Ярослава Мудрого, 2009. 280 с
  2. Молчанов А.М. Кинетическая модель иммунитета: препринт Ин-та прикл. математики АН СССР. М.: Изд-во АН СССР, 1970. 22 с
  3. Hege J.S., Cole G. A mathematical model relating circulating antibody and antibody forming cell. J. Immunol. 1966; 97: 34-40.
  4. Bell G.I. Prey-predator equations simulating an immune response. Math. Biosci. 1973; 16: 291-314.
  5. Марчук Г.И. Математические модели в иммунологии. Вычислительные методы и эксперименты. М.: Наука, 1991. 304 с.
  6. Романюха А.А., Руднев С.Г., Зуев С.М., Дымников В.П. (ред.). Анализ данных и моделирование инфекционных заболеваний. Современные проблемы вычислительной математики и математического моделирования. М.: Наука, 2005. В 2-х т. Т. 2. Математическое моделирование. М.: Наука, 2005; 352-404
  7. Thorley-Lawson D.A. EBV Persistence-Introducing the Virus. Curr. Top. Microbiol. Immunol. 2015; 390 (1): 151-209.
  8. Castro M., Lythe G., Molina-Paris C., Ribeiro R.M. Mathematics in modern immunology. Interface Focus. 2016; 6(2): 20150093. doi: 10.1098/rsfs. 2015.0093
  9. Babcock G.J., Decker L.L., Volk M., Thorley-Lawson D.A. EBV persistence in memory B cells in vivo. Immunity 1998; 9(3): 395-404.
  10. Thorley-Lawson D.A., Gross A. Persistence of the Epstein-Barr virus and the origins of associated lymphomas. N. Engl. J. Med. 2004; 350(13): 1328-37.
  11. Pender M.P., Csurhes P.A., Burrows J.M., Burrows S.R. Defective T-cell control of Epstein-Barr virus infection in multiple sclerosis. Clin. Transl. Immunology 2017; 6(1): е126.
  12. Hochberg D., Souza T., Catalina M., Sullivan J.L., Luzuriaga K., Thorley-Lawson D.A. Acute infection with Epstein-Barr virus targets and overwhelms the peripheral memory B-cell compartment with resting, latently infected cells. J. Virol. 2004; 78(10): 5194-204.
  13. Thorley-Lawson D.A., Hawkins J.B., Tracy S.I., Shapiro M. The Pathogenesis of Epstein-Barr virus Persistent Infection. Curr. Opin.Virol. 2013; 3(3): 227-32.
  14. Гурцевич В.Э. Вирус Эпштейна-Барр и классическая лимфома Ходжкина. Клиническая онкогематология 2016; 9(2): 101-4
  15. Hawkins J.B., Delgado-Eckert E., Thorley-Lawson D.A., Shapiro M. The cycle of EBV infection explains persistence, the sizes of the infected cell populations and which come under CTL regulation. PLoS Pathog. 2013; 9(10): e1003685.
  16. Hadinoto V., Shapiro M., Sun C.C., Thorley-Lawson D.A. The Dynamics of EBV Shedding Implicate a Central Role for Epithelial Cells in Amplifying Viral Output. PLoS Pathog. 2009; 5(7): e1000496.
  17. Симованьян Э.Н., Денисенко В.Б., Григорян А.В., Ким М.А., Бовтало Л.Ф., Белугина Л.В. Эпштейна-Барр вирусная инфекция у детей: совершенствование программы диагностики и лечения. Детские инфекции 2016; 15(1): 15-24.
  18. Huynh G.T., Rong L. Modeling the dynamics of virus shedding into the saliva of Epstein-Barr virus positive individuals. J. Theor. Biol. 2012; 310: 105-14.
  19. Пермякова А.В., Поспелова Н.С., Львова И.И. Оптимизация диагностики цитомегаловирусной инфекции у детей младшего возраста. Детские инфекции 2018; 17(3): 51-6.
  20. Горелов А.В., Музыка А.Д., Мелехина Е.В., Петухова Е.В., Шипулина О.Ю., Домонова Э.А., Лысенкова М.Ю., Чугунова О.Л., Акопян А.С., Барыкин В.И. Инфекция вируса герпеса человека 6-го типа у детей, госпитализированных с клиническими проявлениями острого респираторного заболевания. Эпидемиол. инфекц. болезни. Актуал. вопр. 2017; (6): 16-24
  21. Thom J.T., Weber T.C., Walton S.M., Torti N., Oxenius A. The Salivary Gland Acts as a Sink for Tissue-Resident Memory CD8(+) T Cells, Facilitating Protection from Local Cytomegalovirus Infection. Cell Rep. 2015; 13: 1125-36. doi: 10.1016/j.celrep.2015.09.082
  22. Eliassen E., Di Luca D., Rizzo R., Barao I. The Interplay between Natural Killer Cells and Human Herpesvirus-6. Viruses 2017; 9(12): 367-72

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Bionika Media, 2020

Este site utiliza cookies

Ao continuar usando nosso site, você concorda com o procedimento de cookies que mantêm o site funcionando normalmente.

Informação sobre cookies