Assurance of Bioanalytical Measurements Reliability for Nucleic Acids in the Food Industry

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Bioanalytical measurements of nucleic acids are applied to the most important challenges in the food industry. The international comparability of measurements is the basis for international trade. International cooperation of metrological institutes ensures comparability of measurements including nucleic acid analysis.

  1. I. Mendeleyev Institute for Metrology works on creation of the state primary standard of DNA sequence copy number unit, which will allow to provide metrological traceability of nucleic acids measurement results at the national level. To meet the needs of analytical laboratories, reference materials of nucleic acid composition will be created.

Full Text

Restricted Access

About the authors

A. L. Runov

All-Russian Research Institute of Metrology named after D.I. Mendeleev

Author for correspondence.
Email: a.l.runov@vniim.ru
Russian Federation, Saint Petersburg

M. S. Vonsky

All-Russian Research Institute of Metrology named after D.I. Mendeleev

Email: a.l.runov@vniim.ru

кандидат биологических наук

Russian Federation, Saint Petersburg

References

  1. Семеко Г. В. Мировой продовольственный рынок: современные вызовы и перспективы. Экономические и социальные проблемы России. 2023; 1:19–43. doi: 10.31249/espr/2023.01.01. Semeko G. V. World Food Market: Current Challenges and Prospects. Jekonomicheskie i social’nye problemy Rossii – Economic and social problems of Russia. 2023; 1:19–43. doi: 10.31249/espr/2023.01.01.
  2. National Metrology Systems. Developing the institutional and legislative framework. BIPM, 2021. Available at: https://www.bipm.org/documents/20126/42177518/National-Metrology-Systems.pdf.
  3. Минаев М. Ю., Фомина Т. А., Махова А. А. Особенности отбора пищевой продукции для молекулярно-диагностических исследований. Всё о мясе. 2019; 5:28–30. doi: 10.21323/2071-2499-2019-5-28-30. Minaev M. Ju., Fomina T. A., Mahova A. A. Sampling Features of Food Products for Molecular Diagnostic Studies. Vsjo o Mjase – All about Meat. 2019; 5:28–30. doi: 10.21323/2071-2499-2019-5-28-30.
  4. Sajali, N., Wong, S.C., Hanapi, U.K et al. The challenges of DNA extraction in different assorted food matrices: a review. Journal of Food Science. 2018; 83:2409–2414. doi: 10.1111/1750-3841.14338.
  5. Pfeiffer F., Gröber C., Blank M. et al. Systematic evaluation of error rates and causes in short samples in next-generation sequencing. Sci Rep. 2018, 8:10950. doi: 10.1038/s41598-018-29325-6.
  6. Zook J., Catoe D., McDaniel J. et al. Extensive sequencing of seven human genomes to characterize benchmark reference materials. Sci Data. 2016; 3:160025. doi: 10.1038/sdata.2016.25.
  7. Artika I. M., Dewi Y. P., Nainggolan I. M., Siregar J. E., Antonjaya U. Real-Time Polymerase Chain Reaction: Current Techniques, Applications, and Role in COVID-19 Diagnosis. Genes. 2022; 13:2387. doi.org: 10.3390/genes13122387.
  8. Whale A. S., Jones G. M., Pavšič J. et al. Assessment of Digital PCR as a Primary Reference Measurement Procedure to Support Advances in Precision Medicine. Clin. Chem. 2018; 64(9):1296–1307. doi: 10.1373/clinchem.2017.285478.
  9. Yoo H. B., Park S. R., Dong L., et al. International Comparison of Enumeration-Based Quantification of DNA Copy-Concentration Using Flow Cytometric Counting and Digital Polymerase Chain Reaction. Anal Chem. 2016; 88:24:12169–12176. doi: 10.1021/acs.analchem.6b03076.
  10. Mester Z., Corbisier P. et al. Final report of CCQM-K86.c Relative quantification of genomic DNA fragments extracted from a biological tissue. Metrologia. 2020; 57(1A):0804. doi: 10.1088/0026-1394/57/1A/08004.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2023 Runov A.L., Vonsky M.S.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies