Chlorogenic and Caffeic Acids: Applications and Methods of Determination

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Chlorogenic and caffeic acids are among the most common hydroxycinnamic acids. They are present in a variety of plants, including coffee, tea, and fruits. These compounds are the object of active research with a focus on their biological activity and potential applications in maintenance of human health. This review discusses the importance of caffeic and chlorogenic acids, their applications, and the methods of determination in various objects. The article focuses on the sources of these acids, their biological activity, and their impact on human health. It also discusses modern approaches to the analysis of the content of caffeic and chlorogenic acids in food products, beverages and medicines.

Full Text

Restricted Access

About the authors

Tatiana D. Ksenofontova

MISiS National University of Science and Technology; Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences

Author for correspondence.
Email: Ksenofontovat@bk.ru
ORCID iD: 0009-0009-9605-2422

Postgraduate Student; Junior Researcher

Russian Federation, Moscow; Moscow

Vasilisa B. Baranovskaya

MISiS National University of Science and Technology; Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences

Email: baranovskaya@list.ru
ORCID iD: 0000-0002-0076-9990

Doctor of Chemical Sciences, Associate Professor at the Department of Certification and Analytical Control; Leading Researcher

Russian Federation, Moscow; Moscow

References

  1. Santana-Gálvez J., Cisneros-Zevallos L., Jacobo-Velázquez D. A. Chlorogenic Acid: Recent Advances on Its Dual Role as a Food Additive and a Nutraceutical against Metabolic Syndrome. Molecules. 2017. 22 (3): 358.
  2. Robiquet. Ueber den Kaffee. Ann. Pharm. 1837. 23: 93–95.
  3. Payen S. Untersuchung des Kaffees. Ann. Chem. Pharm. 1846. 60: 286–294.
  4. Behne S., Franke H., Schwarz S., Lachenmeier D. W. Risk Assessment of Chlorogenic and Isochlorogenic Acids in Coffee By-Products. Molecules. 2023. 28 (14): 5540.
  5. Gorter K. Beiträge zur Kenntniss des Kaffees. (Erste Abhandlung.). Justus Liebigs Ann. Chem., 1908. 358: 327–348.
  6. Charaux C. J. Pharm. Chim. 1910. 102: 292.
  7. Fischer H. O. L., Dangschat G. Konstitution der Chlorogensäure (3. Mitteil. über Chinasäure Derivate). Ber. dtsch. Chem. Ges. A/B. 1932. 65: 1037–1040.
  8. Ventura K. Unremitting problems with chlorogenic acid nomenclature: a review. Química Nova. 2016. 39 (4): 530–533.
  9. IUPAC Commission on the Nomenclature of Organic Chemistry (CON) and IUPAC–IUB Commission on Biochemical Nomenclature (CBN). The nomenclature of cyclitols. Tentative rules. Biochem J. 1969. 112 (1): 17–28.
  10. Manivel P., Chen X. (2021). Chlorogenic, Caffeic, and Ferulic Acids and Their Derivatives in Foods. In: Xiao J, Sarker SD, Asakawa Y. (eds) Handbook of Dietary Phytochemicals. Springer, Singapore.
  11. Rudrapal M., Rakshit G., Singh R. P., Garse S., Khan J., Chakraborty S. Dietary Polyphenols: Review on Chemistry/Sources, Bioavailability/Metabolism, Antioxidant Effects, and Their Role in Disease Management. Antioxidants. 2024. 13(4): 429.
  12. Laguerre M., Bayrasy C., Panya A., Weiss J., McClements D. J., Lecomte J., Decker E. A., Villeneuve P. What makes good antioxidants in lipid-based systems? The next theories beyond the polar paradox. Crit Rev Food Sci Nutr. 2015. 55 (2): 183–201.
  13. Bayram I., Decker E. A. Underlying mechanisms of synergistic antioxidant interactions during lipid oxidation. Trends in Food Science & Technology. 2023. 133: 219–230.
  14. Li Z., Niu L., Chen Y., Qiu X., Du T., Zhu M., Wang M., Mo H., Xiao S. Recent advance in the biological activity of chlorogenic acid and its application in food industry. Int J Food Sci Technol. 2023. 58: 4931–4947.
  15. Wang D., Li H., Hou T. Y., Zhang Z. J., Li H. Z. Effects of conjugated interactions between Perilla seed meal proteins and different polyphenols on the structural and functional properties of proteins. Food Chem. 2024. 433: 137345.
  16. Mills C., Tzounis X., Oruna-Concha M., Mottram D., Gibson G., Spencer J. In vitro colonic metabolism of coffee and chlorogenic acid results in selective changes in human faecal microbiota growth. British Journal of Nutrition, 2015. 113 (8): 1220–1227.
  17. Wang L., Pan X., Jiang L., Chu Y., Gao S., Jiang X., Zhang Y., Chen Y., Luo S., Peng C. The Biological Activity Mechanism of Chlorogenic Acid and Its Applications in Food Industry: A Review. Front Nutr. 2022. 9: 943911.
  18. Damasceno S. S., Dantas B. B., Ribeiro-Filho J., Antônio M. Araújo D., Galberto M. da Costa J Chemical Properties of Caffeic and Ferulic Acids in Biological System: Implications in Cancer Therapy. A Review. Curr Pharm Des. 2017. 23 (20): 3015–3023.
  19. Singh M, Kaneko T. Ultra-tough artificial woods of polyphenol-derived biodegradable Co-polymer with Poly(butylene succinate). Heliyon. 2023. 9(6): e16567.
  20. Liu H., Han M., Li J., Qin L., Chen L., Hao Q., Jiang D., Chen D, Ji Y., Han H., Long C., Zhou Y., Feng J., Wang X. A Caffeic Acid Matrix Improves In Situ Detection and Imaging of Proteins with High Molecular Weight Close to 200,000 Da in Tissues by Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry Imaging. Anal Chem. 2021. 93 (35): 11920–11928.
  21. Тищенко Е. А., Цюпко Т. Г., Милевская В. В., Темердашев А. З. Идентификация и хроматографическое определение биоактивных компонентов в образцах растворимого кофе. Аналитика и контроль. 2017. 21 (3): 251–261. Tishchenko E. A, Tsiupko T. G, Milevskaia V. V., Temerdashev A. Z. Identification and chromatographic determination of bioactive components in the instant coffee samples. Analitika i kontrol’ [Analytics and Control]. 2017. 21(3): 251–261.
  22. Agatonovic-Kustrin S., Hettiarachchi C. G., Morton D. W., Razic S. Analysis of phenolics in wine by high performance thin-layer chromatography with gradient elution and high resolution plate imaging. J Pharm Biomed Anal. 2015. 102: 93–99.
  23. Shanaida M., Jasicka-Misiak I., Makowicz E., Stanek N., Shanaida V., Wieczorek P. P. Development of high-performance thin layer chromatography method for identification of phenolic compounds and quantification of rosmarinic acid content in some species of the Lamiaceae family. J Pharm Bioallied Sci. 2020. 12 (2): 139–145.
  24. Chaowuttikul C., Palanuvej C., Ruangrungsi N. Quantification of chlorogenic acid, rosmarinic acid, and caffeic acid contents in selected Thai medicinal plants using RP-HPLC-DAD. Braz J Pharm Sci [Internet]. 2020. 56: e17547.
  25. Mocan A., Vlase L., Leti A., Arsene I., Vodnar D., Bischin C., et al. HPLC/MS analysis of caffeic and chlorogenic acids from three Romanian veronica species and their antioxidant and antimicrobial properties. Farmacia. 2015. 63 (6): 890–896.
  26. Wang J., Zhao Y. M., Zhang M. L., Shi Q. W. Simultaneous determination of chlorogenic acid, caffeic acid, alantolactone and isoalantolactone in Inula helenium by HPLC. J Chromatogr Sci. 2015. 53 (4): 526–530.
  27. Weon J. B., Jung Y. S., Ma C. J. Quality Analysis of Chlorogenic Acid and Hyperoside in Crataegi fructus. Pharmacogn Mag. 2016.12 (46): 98–103.
  28. Milevskaya V. V., Statkus M. A., Temerdashev Z. A., Kiseleva N. V., Butyl’skaya T. S., Shil’ko E. A. Extraction and determination of biologically active components of St. John’s wort and its pharmaceutical preparations. J Anal Chem. 2016. 71: 741–747.
  29. Старцева О. В., Палийа И. Н., Симагинаб Н. О., Макаричева А. А. Быстрый метод полуколичественного определения хлорогеновой кислоты и её производных в полыни. Журнал «Орбиталь». 2017. 1: 7–14. Startseva O. V., Paliy I. N., Simagina N. O., Makaricheva A. A. Fast semi-quantitative method of determination of chlorogenic acid and its derivatives in sagebrush. Orbital’ [The Orbital]. 2017. 1: 7–14.
  30. Дейнека В. И., Третьяков М. Ю., Олейниц Е. Ю., Павлов А. А., Дейнека Л. А., Блинова И. П., Манохина Л. А. Определение антоцианов и хлорогеновых кислот в плодах растений рода арония: опыт хемосистематики. Химия растительного сырья. 2019. 2: 161–167. Deineka V. I., Tret’akov M. Y., Oleiniz Y. Y., Pavlov A. A., Deineka L. A, Blinova I. P., Manokhina L. A. Determination of anthocyanins and chlorogenic acids in fruits of aronia genus: the experience of chemosystemetics. Khimija Rastitel’nogo Syr’ja [Chemistry of plant raw material]. 2019. 2:161–167
  31. Темердашев З. А., Чубукина Т. К., Виницкая Е. А., Киселева Н. В. Хроматографическая оценка содержания фенольных соединений в экстрактах ромашки аптечной (Matricаria chamomilla L.) в различных условиях извлечения. Журнал аналитической химии. 2023. 78 (4): 365–375. Temerdashev Z. A., Chubukina T. K., Vinitskaya E. A., Kiseleva N. V. Chromatographic Assessment of the Concentration of Phenolic Compounds in Wild Chamomile (Matricaria chamomilla L.) Extracts Obtained under Various Extraction Conditions. Journal of Analytical Chemistry. 2023. 78 (4): 365–375.
  32. Köseoglu Yilmaz P., Kolak U. SPE-HPLC Determination of Chlorogenic and Phenolic Acids in Coffee. J Chromatogr Sci. 2017. 55 (7): 712–718.
  33. Tsai C.-F., Jioe I. P. J. The Analysis of Chlorogenic Acid and Caffeine Content and Its Correlation with Coffee Bean Color under Different Roasting Degree and Sources of Coffee (Coffea arabica Typica). Processes. 2021. 9 (11): 2040.
  34. Awwad S., Issa R., Alnsour L., Albals D., Al-Momani I. Quantification of Caffeine and Chlorogenic Acid in Green and Roasted Coffee Samples Using HPLC-DAD and Evaluation of the Effect of Degree of Roasting on Their Levels. Molecules. 2021. 26 (24):7502.
  35. Jeon J. S., Kim H. T., Jeong I. H., Hong S. R., Oh M. S., Park K. H., Shim J. H., Abd El-Aty A. M. Determination of chlorogenic acids and caffeine in homemade brewed coffee prepared under various conditions. J Chromatogr B Analyt Technol Biomed Life Sci. 2017. 1064: 115–123.
  36. Milevskaya V. V., Prasad S., Temerdashev Z. A. Extraction and chromatographic determination of phenolic compounds from medicinal herbs in the Lamiaceae and Hypericaceae families: A review. Microchemical Journal. 2019. 145: 1036–1049.
  37. Pavlova L. V., Platonov I. A., Kurkin V. A., Afanasyeva P. V., Novikova E. A., Muhanova I. M. Evaluation of Efficiency of Biologically Active Compounds Subcritical Extraction from the Chamomile Flowers (Chamomilla recutita R.) Growing in the Samara Region. Sverhkriticheskie Flyuidy: Teoriya i Praktika. 2018. 1: 16–33.
  38. Дитченко Т. И., Шабуня П. С., Фатыхова С. А., Молчан О. В., Юрин В. М. Анализ производных кофейной кислоты в каллусной культуре Echinacea purpurea. Известия вузов. Прикладная химия и биотехнология. 2017. 7 (2): 54–63. Ditchenko T. I., Shabunya P. S., Fatykhova S. A., Molchan O. V., Yurin V. M. Analysis of caffeic acid derivatives in echinacea purpurea сallus culture. Proceedings of Universities. Applied Chemistry and Biotechnology. 2017. 7 (2): 54–63.
  39. Razboršek M. I., Ivanović M., Kolar M. Validated Stability-Indicating GC-MS Method for Characterization of Forced Degradation Products of Trans-Caffeic Acid and Trans-Ferulic Acid. Molecules. 2021. 26: 2475.
  40. Lara-Guzmán O. J., Álvarez-Quintero R., Osorio E., Naranjo-Cano M., Muñoz-Durango K. GC / MS method to quantify bioavailable phenolic compounds and antioxidant capacity determination of plasma after acute coffee consumption in human volunteers. Food Res Int. 2016. 89 (Pt 1): 219–226.
  41. Kim Y., Seo C., Lee H. S., Ji M., Oh S., Choi B. C., Kim D. Y., Park K. W., Park J., Paik M. J. Bull. Korean Chem. Soc. 2022. 43 (1): 88.
  42. Temerdashev Z., Vinitskaya E., Meshcheryakova E., Shpigun O. Chromatographic analysis of water and water-alcohol extracts of Echinacea purpurea L. obtained by various methods. Microchemical Journal. 2022. 179: 107507.
  43. Темердашев З. А., Виницкая Е. А., Коробкова В. В. Газохроматомасс-спектрометрическое определение фенольных соединений в водных экстрактах Hypericum Perforatum L. c использованием твердофазной аналитической дериватизации. Журнал аналитической химии. 2022. 77 (11): 1040–1051. Temerdashev Z. A., Vinitskaya E. A., Korobkova V. V. Determination of Phenolic Compounds in Hypericum perforatum L. Aqueous Extracts by Gas Chromatography–Mass Spectrometry Using Solid-Phase Analytical Derivatization. Journal of Analytical Chemistry. 2022. 77 (11): 1040–1051.
  44. Spagnol C. M., Oliveira T. S., Isaac V. L. B., Corrêa M. A., Salgado H. R. N. Validation of Caffeic Acid in Emulsion by UV-Spectrophotometric Method. Physical Chemistry. 2015. 5 (1): 16–22.
  45. Компанцева Е. В., Айрапетова А. Ю., Саушкина А. С. Определение гидроксикоричных кислот в растительном сырье спектрофотометрическим методом. Часть 1. Прямая спектрофотометрия (обзор). Ведомости Научного центра экспертизы средств медицинского применения. Регуляторные исследования и экспертиза лекарственных средств. 2024. 14 (2): 181–195. Kompantseva E. V., Ayrapetova A. Yu., Saushkina A. S. Spectrophotometric Determination of Hydroxycinnamic Acids in Herbal Drugs. Part 1. Direct Spectrophotometry (Review). Bulletin of the Scientific Centre for Expert Evaluation of Medicinal Products. Regulatory Research and Medicine Evaluation. 2024. 14 (2): 181–195.
  46. Компанцева Е. В., Саушкина А. С., Айрапетова А. Ю. Определение гидроксикоричных кислот в растительном сырье спектрофотометрическим методом. Часть 2. Определение гидроксикоричных кислот в присутствии полифенольных соединений (обзор). Ведомости Научного центра экспертизы средств медицинского применения. Регуляторные исследования и экспертиза лекарственных средств. 2024. 14 (2): 196–206. Kompantseva E. V., Saushkina A. S., Ayrapetova A. Yu. Spectrophotometric Determination of Hydroxycinnamic Acids in Herbal Drugs. Part 2. Determination of Hydroxycinnamic Acids in the Presence of Polyphenolic Compounds (Review). Bulletin of the Scientific Centre for Expert Evaluation of Medicinal Products. Regulatory Research and Medicine Evaluation. 2024. 14 (2): 196–206.
  47. Зиятдинова Г. К., Гусс Е. В., Морозова Е. В., Будников Г. К. Электрод на основе электрополимеризованного желтого «солнечного заката» для одновременного вольтамперометрического определения хлорогеновой и феруловой кислот. Журнал аналитической химии. 2021. 76 (3): 268–278. Ziyatdinova G. K., Guss E. V., Morozova E. V., Budnikov H. C. An Electrode Based on Electropolymerized Sunset Yellow for the Simultaneous Voltammetric Determination of Chlorogenic and Ferulic Acids. Journal of Analytical Chemistry. 2021. 76 (3): 268–278.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Caffeic (left) and chlorogenic (right) acids

Download (116KB)
3. Fig. 2. Digitised images of HPTLC plates before (left) and after derivatisation (right); 1-4, 6-9, 11-13 - wine samples; 5 and 10 - standards; 14 - salicylic acid [22]

Download (2MB)
4. Fig. 3. HPTLC of herbal extracts and polyphenol standards in mobile phase A (left) and B (right): 1 - apigenin; 2 - luteolin; 3 - rutin; 4 - caffeic acid; 5 - rosmarinic acid; 6 - chlorogenic acid; A - Dracocephalum moldavica; B - Lophanthus anisatus; C - Monarda fistulosa; D - Ocimum americanum; E - Satureja hortensis [23]

Download (1MB)
5. Fig. 4. Silylation reaction of caffeic acid with BSTFA

Download (145KB)
6. Fig. 5. Absorption spectrum in the ultraviolet region of a solution of caffeic acid in a mixture of ethanol : water in the proportion 40 : 60 [44]

Download (156KB)

Copyright (c) 2024 Ksenofontova T.D., Baranovskaya V.B.