Development of a Microfluidic Fluorescent Chip Basis for Express Diagnostics Systems

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Development of rapid and sensitive diagnostic methods is an actual issue of modern medicine. Current methods of diagnostics of myocardial infarction based on determination of enzyme activity (aspartate aminotransferase, creatine kinase, lactate dehydrogenase) have limitations due to low specificity. A unique direction in this field is the development of systems for express diagnostics of various pathologies based on microfluidic devices and their components – microchips. This approach uses the principle of a modified transparent matrix that allows photometric analysis by turbidimetry and
nephelometry methods. The work presents the development of a framework for a rapid diagnostic chip based on specific peptides and a fluorescent dye.

Full Text

Restricted Access

About the authors

Evgeny A. Smirnov

Federal State Budgetary Institution V. A. Almazov National Medical Research Center of the Ministry of Health of the Russian Federation; FGAOU VO St. Petersburg State Electrotechnical University LETI named after V. I. Ulyanov (Lenin)

Author for correspondence.
Email: sea222777@yandex.ru
Russian Federation, St. Petersburg; St. Petersburg

Dmitry V. Korolev

Federal State Budgetary Institution V. A. Almazov National Medical Research Center of the Ministry of Health of the Russian Federation; Federal State Budgetary Educational Institution of Higher Education First Saint Petersburg State Medical University named after Academician I. P. Pavlov of the Ministry of Health of the Russian Federation

Email: dimon@cardioprotect.spb.ru
ORCID iD: 0000-0003-2848-3035
Russian Federation, St. Petersburg; St. Petersburg

References

  1. Chavez-Pineda O. G., Rodriguez-Moncayo R., Cedillo-Alcantar D. F., Guevara-Pantoja P. E., Amador-Hernandez J. U., Garcia-Cordero J. L. Microfluidic systems for the analysis of blood-derived molecular biomarkers. Electrophoresis. 2022; 43(16–17):1667–1700. doi: 10.1002/elps.202200067.
  2. Khalil H. Traditional and novel diagnostic biomarkers for acute myocardial infarction. The Egyptian Journal of Internal Medicine. 2022; 34(1): 87.
  3. Mythili S., Malathi N. Diagnostic markers of acute myocardial infarction. Biomedical reports. 2015; 3(6): 743–748.
  4. Rotenberg Z., Davidson E., Weinberger I., Fuchs J., Sperling O., Agmon J. The efficiency of lactate dehydrogenase isoenzyme determination for the diagnosis of acute myocardial infarction. Arch Pathol Lab Med. 1988; 112(9): 895–7.
  5. Bouvet J. P. Immunoglobulin Fab fragment-binding proteins. International journal of immunopharmacology. 1994; 16(5–6): 419–424.
  6. Mu L. et al. An l-rhamnose-binding lectin from Nile tilapia (Oreochromis niloticus) possesses agglutination activity and regulates inflammation, phagocytosis and respiratory burst of monocytes/macrophages. Developmental & Comparative Immunology. 2022; 126: 104256.
  7. Flemming C. et al. Determination of lectin characteristics by a novel agglutination technique. Analytical biochemistry. 1992; 205(2): 251–256.
  8. Chopra A., Batra J. K. Antimicrobial activity of human eosinophil granule proteins. Eosinophils: Methods and Protocols. 2021; Vol. 2241. https://doi.org/10.1007/978-1-0716-1095-4_20.
  9. Jung E. et al. Identification of tissue-specific targeting peptide. Journal of computer-aided molecular design. 2012; 26: 1267–1275.
  10. Карасев В. А., Лучинин В. В., Соколов А. И. Био-и квантово-информационные технологии в наноэлектронике: учебное пособие для студентов, обучающихся по направлениям. СПб: Издательство СПбГЭТУ «ЛЭТИ», 2013. 220 с. Karasev V. A., Luchinin V. V., Sokolov A. I. Bio- and quantum-information technologies in nanoelectronics: a textbook for students studying in the following areas. St.Petersburg: SPbGJeTU LJeTI Publ., 2013. 220 p.
  11. McArdle H., Jimenez-Mateos E.M., Raoof R et al. TORNADO – Theranostic One-Step RNA Detector; microfluidic disc for the direct detection of microRNA-134 in plasma and cerebrospinal fluid. Sci Rep. 2017; 7: 1750.
  12. Kaur G., Tomar M., Gupta V. Development of a microfluidic electrochemical biosensor: Prospect for point-of-care cholesterol monitoring. Sensors and Actuators B: Chemical. 2018; 261: 460–466.
  13. Shin S. R., Kilic T., Zhang Y. S. et al. Label-Free and Regenerative Electrochemical Microfluidic Biosensors for Continual Monitoring of Cell Secretomes. Advanced Science. 2017; 4(5): 1600522.
  14. Kirsch J., Siltanen C., Zhou Q. et al. Biosensor technology: recent advances in threat agent detection and medicine. Chem. Soc. Rev. 2013; 42: 8733–68.
  15. Ghrera A. S., Pandey C. M., Malhotra B. D. Multiwalled carbon nanotube modified microfluidic-based biosensor chip for nucleic acid detection. Sensors and Actuators B: Chemical. 2018; 266: 329–336.
  16. Jiang H., Jiang D., Zhu P. et al. A novel mast cell co-culture microfluidic chip for the electrochemical evaluation of food allergen. Biosensors and Bioelectronics. 2016; 83: 126–133.
  17. Campaña A., Florez S., Noguera M. et al. Enzyme-Based Electrochemical Biosensors for Microfluidic Platforms to Detect Pharmaceutical Residues in Wastewater. Biosensors. 2019; 9(1): 41.
  18. Arora A., Simone G., Salieb-Beugelaar G. B. et al. Latest Developments in Micro Total Analysis Systems. Analytical Chemistry. 2010; 82(12): 4830–4847.
  19. Fernández-la-Villa A., Pozo-Ayuso D.F., Castaño-Álvarez M. Microfluidics and electrochemistry: An emerging tandem for next-generation analytical microsystems. Current Opinion in Electrochemistry. 2019; 15: 175–185.
  20. Haeberle S., Zengerle R. Microfluidic platforms for lab-on-a-chip applications. Lab Chip, 2007; 7: 1094–1110.
  21. Rackus D. G., Shamsi M. H., Wheeler A. R. Electrochemistry, biosensors and microfluidics: a convergence of fields. Chemical Society Reviews. 2015; 44(15): 5320–5340.
  22. Mohanan N., Montazer Z., Sharma P. K., Levin D. B. Microbial and Enzymatic Degradation of Synthetic Plastics. Front Microbiol. 2020; 11:580709. doi: 10.3389/fmicb.2020.580709. PMID: 33324366; PMCID: PMC7726165.
  23. Тюленев И. И. Покрытия на основе полимерных материалов. Дорожники. 2015; 3: 36–37. Tjulenev I. I. Coatings based on polymeric materials. Dorozhniki. 2015; 3: 36–37.
  24. Прокопчук Н. Р. и др. Влияние наночастиц диоксида титана на свойства ПЭТ. Технология органических веществ: материалы 87-й научно-технической конференции профессорско-преподавательского состава, научных сотрудников и аспирантов, Минск, 31 января – 17 февраля 2023 г. Минск: БГТУ, 2023. С. 111–115. Prokopchuk N. R. et al. Effect of titanium dioxide nanoparticles on the properties of PET. Technology of organic substances: Proceedings of the 87th scientific and technical conference of faculty, research staff and postgraduate students, Minsk, 31.01–17.02.2023. Minsk: BGTU Publ., 2023. P. 111–115.
  25. Frazer R. Q. et al. PMMA: an essential material in medicine and dentistry. Journal of long-term effects of medical implants. 2005; 15(6).
  26. Шевлик Н. В. и др. Синтез и свойства аморфного светопрозрачного С-ПЭТ. Полимерные материалы и технологии. 2016; 2(3): 35. Shevlik N. V. et al. Synthesis and properties of amorphous translucent C-PET. Polimernye materialy i tehnologii. 2016; 2(3): 35.
  27. Moon J. H. et al. Formation of uniform aminosilane thin layers: an imine formation to measure relative surface density of the amine group. Langmuir. 1996; 12(20): 4621–4624.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Statistics of publications in the PubMed scientific database on the Biomarker sensor query

Download (118KB)
3. Fig. 2. Binding of the indocyanine green dye to the surface of the aminated matrix

Download (195KB)
4. Fig. 3. Investigation of chemical resistance of materials to 0.1 n NaOH. 1 – PET; 2 – glass-photoresist; 3 – PMMA; 4 – ABS plastic

Download (76KB)
5. Fig. 4. ICZ chip: a – the adsorption process, b – the adsorption process is completed

Download (104KB)

Copyright (c) 2025 Smirnov E.A., Korolev D.V.