ВЫБОР ПЛЕНКООБРАЗОВАТЕЛЕЙ ПРИ МИКРОКАПСУЛИРОВАНИИ ВИНПОЦЕТИНА


Цитировать

Полный текст

Аннотация

Введение. Научный и практический интерес к проблеме микрокапсулирования остается высоким, о чем свидетельствует обширная литература по этой теме. Выбор плёнкообразователя в качестве носителя биологически активного вещества при микрокапсулировании определяется требуемой скоростью высвобождения лекарственного вещества, в значительной мере, зависящей от физических свойств последнего. В качестве оболочки часто используется биодеградируемые полимеры – альгинат натрия и желатин. Цель работы – сравнительный анализ термодинамических характеристик высвобождения винпоцетина из микрокапсул, содержащих в качестве оболочки желатин, натрия альгинат, в воду и в этанол. Материалы и методы. В качестве начального состояния для расчета термодинамических характеристик высвобождения винпоцетина из полимеров была использована конформация системы «полимер-винпоцетин» после термодинамического уравновешивания методом молекулярной динамики в программе Биоэврика. Результаты и обсуждение. Высвобождение винпоцетина из альгината натрия в воду с pH=2 является энергетически выгодным процессом, а также сопровождается увеличением энтропии, что говорит о более высокой термодинамической вероятности конечного состояния (винпоцетин в растворе). Высвобождение винпоцетина в этанол из альгината натрия энергетически менее выгодно по сравнению с высвобождением в воду. Высвобождение винпоцетина из желатина в этанол энергетически менее выгодно по сравнению с высвобождением в воду. Заключение. Сравнительный анализ результатов квантово-химического вычисления термодинамических характеристик высвобождения винпоцетина из альгината натрия и желатина позволяет сделать вывод о большем сродстве винпоцетина к альгинату натрия в различных средах. Следствием этого, может быть более высокая степень высвобождения винпоцетина в раствор HCl 0,01 M и спирт из желатина по сравнению с альгинатом натрия. 

Об авторах

Ю. А. Полковникова

Федеральное государственное бюджетное образовательное учреждение высшего образования «Воронежский государственный университет»

Email: Juli-polk@mail.ru

А. А. Глушко

Пятигорский медико-фармацевтический институт – филиал ФГБОУ ВО ВолгГМУ Минздрава России

Email: alexander.glushko@lcmmp.ru

Список литературы

  1. Грехнёва Е.В., Белоконь В.Л., Орлова С.В. Микрокапсулирование биологически активных веществ в водо-нерастворимые полимеры // Auditorium. 2016. № 2 (10). С. 15–19.
  2. Постраш Я.В., Хишова О.М. Микрокапсулирование в фармации – современное состояние и перспективы // Вестник фармации. 2010. №2 (48). С. 73–79.
  3. Полковникова Ю.А., Ганзюк К.О. Разработка пролонгированной пероральной лекарственной формы для композиции винпоцетина с ретинола ацетатом / Пути и формы совершенствования фармацевтического образования. Поиск новых физиологически активных веществ. Материалы 4-й Всероссийской с международным участием научно-методической конференции «Фармобразование-2010» / под ред. Боева С.А. 2010. С. 303–305.
  4. Полковникова Ю.А., Степанова Э.Ф. Возможности создания пролонгированных лекарственных форм афобазола (обзор) // Научные ведомости Белгородского государственного университета. Серия: Медицина. Фармация. 2011. 4(13). С. 190–193.
  5. Сардушкин М.В. Синтез и основные коллоидно-химические характеристики микрокапсул рифампицина, полученных методом простой коацервации / Автореф. дис. ... канд. техн. наук. Москва, 2013.18 с.
  6. Жаворонок Е.С., Кедик С.А., Панов А.В., Петрова Е.А., Суслов В.В. Полимерные микрочастицы для медицины и биологии. 2014. М.: ИФТ, 480 c.
  7. Полковникова Ю.А. Сливкин А.И. Изучение влияния покрытий на кинетику высвобождения афобазола из микрокапсул // Биофармацевтический журнал. 2015. Т. 7. № 6. С. 17–18.
  8. Грехнёва Е.В., Домашева О.Ю. Получение и анализ микрокапсул фурацилина в водорастворимых полимерах // Всероссийский журнал научных публикаций. 2013. №5 (20). С. 5–8.
  9. Степанова Э.Ф., Полковникова Ю.А., Ганзюк К.О., Арльт А.В. Исследование влияния раствора винпоцетина и суспензии из микрокапсул с винпоцетином на динамику изменения объёмной скорости мозгового кровотока в норме у лабораторных животных // Научные ведомости Белгородского государственного университета. Серия: Медицина. Фармация. 2011. Т. 16. № 22–2. С. 32–34.
  10. Полковникова Ю.А., Глушко А.А. Изучение возможности использования натрия альгината в микрокапсулировании винпоцетина // Научные Ведомости БелГУ. Серия: Медицина, фармация. 2017. Вып.40. № 26(275). С. 176–184.
  11. Polkovnikova Y.A., Slivkin A.I. Vinpocetine release from a microencapsulated form // Pharmaceutical Chemistry Journal. 2016. С. 1–3.
  12. Писарев Д.И., Автина Н.В., Новиков О.О. Разработка микрокапсул антиоксидантного действия // Научные ведомости БелГУ. Серия: Медицина. Фармация. 2012. Т. 18–3. № 10 (129). С. 94–97.
  13. Киржанова Е.А., Печенкин М.А., Демина Н.Б., Балабушевич Н.Г. Микро- и наночастицы из альгината и хитозана для трансмукозальной доставки белка // Вестник Московского университета. Серия 2: Химия. 2016. Т. 57. № 2. С. 103–111.
  14. Грехнёва Е.В., Кудрявцева Т.Н. Особенности микрокапсулирования некоторых лекарственных препаратов в альгинат натрия // Auditorium. 2014. Т.3. № 3. С. 12–16.
  15. Шевченко А.В., Бирюкова Л.А., Кудрявцев В.Ф. Аппарат для диспергирования и микрокапсулирования гидрофобных жидкостей / Патент 2161063 РФ, B01F11/02. № 2000100442/12. Заявлено 11.01.2000; опубл. 27.12.2000. 9 с. URL: http://www.freepatent.ru (дата обращения: 21.01.2018)
  16. Полковникова Ю.А. Исследование по разработке капсулированной лекарственной формы винпоцетина // Биофармацевтический журнал. 2015. Т. 7. № 4. С. 10–15.
  17. Silva M.P., Ribas M.M., Favaro-Trindade C.S. Microcapsules loaded with the probiotic Lactobacillus paracasei BGP-1 produced by co-extrusion technology using alginate/shellac as wall material: Characterization and evaluation of drying processes // Food Research International. 2016. Vol. 89. Pt. 1. P. 582–590. DOI: 10.1016/j. foodres.2016.09.008
  18. Dolçà C., Ferrandiz M., Capablanca L., Franco E., Mira E., Lopez F., Garcia D. Microencapsulation of Rosemary Essential Oil by Co-Extrusion/ Gelling Using Alginate as a Wall Materia // Journal of Encapsulation and Adsorption Sciences. 2015. Vol. 5. No. 3. P. 121–130.
  19. Глушко А.А., Халилова С.В. Новая методика математического моделирования процесса жидкостной экстракции на основе молекулярной динамики / Беликовские чтения материалы IV Всероссийской науч-но-практической конференции. Пятигорск, 2015. Издательство ПМФИ: 60 c.
  20. Гендугов Т.А., Щербакова Л.И., Глушко А.А., Кодониди И.П., Сочнев В.С. Изучение взаимодействия производных 4-оксопиримидина с активным центром циклооксигеназы-2 методом молекулярной динамики // Современные проблемы науки и образования. 2015. №2-2.
  21. Cornell W.D., Cieplak P., Bayly C. I., Gould I.R., Merz K.M., Ferguson D.M., Spellmeyer D.C., Fox T., Caldwell J.W., Kollman P.A. A Second Generation Force Field for the Simulation of Proteins, Nucleic Acids, and Organic Molecules // J. Am. Chem. Soc. 1995. No. 117. Р. 5179–5197.
  22. Bykov D., Petrenko T., Izsák R., Neese F. Ef cient implementation of the analytic second derivatives of Hartree-Fock and hybrid DFT energies: a detailed analysis of different approximations // Mol. Phys. 2015. No. 113. Р. 1961.
  23. Минкин В.И., Симкин Б.Я., Миняев Р.М. Строение молекул. Ростов-на-Дону: Феникс, 1997. 560 с.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Полковникова Ю.А., Глушко А.А., 2018

Creative Commons License
Эта статья доступна по лицензии Creative Commons Attribution 4.0 International License.

СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: ПИ № ФС 77 - 67428 от 13.10.2016. 

Данный сайт использует cookie-файлы

Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie, которые обеспечивают правильную работу сайта.

О куки-файлах