Анализ и оценка алгоритмов персонализации взаимодействия с пользователем для разработки социальной сети
- Авторы: Мингалеев Р.Р.1, Мангушева А.Р.1
-
Учреждения:
- Казанский национальный исследовательский технологический университет
- Выпуск: Том 11, № 4 (2024)
- Страницы: 19-24
- Раздел: ИСКУССТВЕННЫЙ ИНТЕЛЛЕКТ И МАШИННОЕ ОБУЧЕНИЕ
- URL: https://journals.eco-vector.com/2313-223X/article/view/658302
- DOI: https://doi.org/10.33693/2313-223X-2024-11-4-19-24
- EDN: https://elibrary.ru/FTISLK
- ID: 658302
Цитировать
Полный текст



Аннотация
Целью данной работы является анализ различных подходов к персонализации, таких как рекомендательные системы и алгоритмы машинного обучения, а также оценка точности данных алгоритмов. Описаны подходы к персонализации на основе рекомендательных систем и методов машинного обучения, а также рассматривается применение искусственного интеллекта для повышения точности рекомендаций. Представлены три основных алгоритма рекомендательных систем: коллаборативная фильтрация, контентная фильтрация и гибридные модели. Основным методом персонализации выбрана коллаборативная фильтрация с использованием Python-библиотеки Surprise, включающей алгоритмы Singular Value Decomposition, Slope One и K-Nearest Neighbors. После сравнительного анализа метрик Root Mean Squared Error и Mean Absolute Error было установлено, что алгоритм k-ближайших соседей показал лучшие результаты, что сделало его предпочтительным для дальнейшей реализации. Итоговая модель, обученная на полном наборе данных, показала хорошие показатели точности и имеет потенциал для практического использования в реальных продуктах. Представленные результаты могут быть полезны разработчикам социальных сетей при выборе оптимальных алгоритмов для улучшения пользовательского опыта, а также для дальнейших исследований в области персонализации и рекомендательных систем.
Полный текст

Об авторах
Руслан Радикович Мингалеев
Казанский национальный исследовательский технологический университет
Автор, ответственный за переписку.
Email: neoch56@mail.ru
аспирант, кафедра интеллектуальных систем и управления информационными ресурсами
Россия, Казань, Республика ТатарстанАлина Раисовна Мангушева
Казанский национальный исследовательский технологический университет
Email: alinamr@mail.ru
Scopus Author ID: 57442238900
доцент, кафедра интеллектуальных систем и управления информационными ресурсами
Россия, Казань, Республика ТатарстанСписок литературы
- Monastyrev V.V., Drobintsev P.D. Recommendation system based on user actions in the social network // Proceedings of the Institute for System Programming of the RAS. 2020. Vol. 32. No. 3. Pp. 101–108. doi: 10.15514/ISPRAS-2020-32(3)-9.
- Кукитз П.В. Применение машинного обучения для персонализации рекомендаций в фудтех индустрии // Journal of Advanced Research in Technical Science. 2024. № 42. С. 31–41. doi: 10.26160/2474-5901-2024-42-31-41.
- Круглик А.С., Лакман И.А. Гибридный подход усиленной контентом коллаборативной фильтрации в области рекомендательных систем // Информационные технологии. 2020. Т. 26. № 9. С. 523–528. doi: 10.17587/it.26.523-528.
- Ляликова В.Г., Безрялин М.М. Построение гибридной рекомендательной системы // Вестник Воронежского государственного университета. Серия: Системный анализ и информационные технологии. 2021. № 4. С. 121–129.
- Третьяков Д.А. Разработка рекомендательной системы на основе метода коллаборативной фильтрации с возможностью использования пользовательских модификаторов // Научное творчество молодежи. Математика. Информатика: матер. XIХ Всерос. науч.-практ. конф. (Анжеро-Судженск, 15–16 мая 2015 г.). Анжеро-Судженск: Филиал Кемеровского гос. ун-та, 2015. С. 54–57.
- Макаров М.П., Новиков А.М. Моделирование и прогнозирование контента в социальных сетях с применением алгоритмов машинного обучения // Вестник Московского университета. Серия 15: Вычислительная математика и кибернетика. 2020. Т. 2. С. 45–63.
- Алгоритм k-ближайших соседей. URL: http://datascientist.one/k-nearest-neighbors-algorithm (дата обращения: 18.11.2024).
- Мангушева А.Р., Кварацхелия А.Г., Рахимов Д.Ф., Григорян К.А. Сервис по автоматической классификации обращений граждан // Матер. XXII Междунар. конф. по вычислительной механике и современным прикладным программным системам (ВМСППС’2021) (Алушта, 4–13 сентября 2021 г.). М.: Московский авиационный институт (национальный исследовательский университет), 2021. С. 131–133.
- Гибадуллин Р.Ф., Максимов А.А., Новиков А.А., Перухин М.Ю. Реконструкция томографических снимков с применением многопроцессорных систем // Вестник Технологического университета. 2017. Т. 20. № 12. С. 87–89.
- Gibadullin R.F., Mullayanov B.I., Perukhin M.Yu. Optimization of water supply by the method with model predictive // International Multi-Conference on Industrial Engineering and Modern Technologies FarEastCon 2020 (Vladivostok, October 6–9, 2020). Vladivostok, 2020. P. 9271134. doi: 10.1109/FarEastCon50210.2020.9271134.
Дополнительные файлы
