Applying GPU parallel programming for image processing and clustering
- 作者: Dilla D.S.1, Pustovalov E.V.1, Artemeva I.L.1
-
隶属关系:
- Far Eastern Federal University
- 期: 卷 11, 编号 4 (2024)
- 页面: 77-86
- 栏目: MATHEMATICAL AND SOFTWARE OF COMPUTЕRS, COMPLEXES AND COMPUTER NETWORKS
- URL: https://journals.eco-vector.com/2313-223X/article/view/658704
- DOI: https://doi.org/10.33693/2313-223X-2024-11-4-77-86
- EDN: https://elibrary.ru/GGAJWU
- ID: 658704
如何引用文章
详细
This paper presents state-of-the-art image processing and structural analysis software tools that use GPU parallel programming to achieve substantial performance gains. The software suite combines advanced preprocessing techniques, object identification methods, clustering algorithms, and analysis tools to facilitate efficient and precise analysis of complex imaging datasets. The case studies illustrate the software’s versatility and effectiveness across diverse scientific domains, including materials science, biological research, and astronomy. By exploiting GPU parallel programming, the tools deliver performance improvements of 5–20x compared to traditional sequential programming, enabling real-time visualization and expedited data processing. The intuitive user interface empowers researchers to fine-tune parameters, visualize results, and interpret data with ease, streamlining the research workflow. The broader impacts of these tools include accelerating scientific discovery, enhancing data analysis accuracy, and driving innovation across diverse scientific fields. A notable example of their effectiveness is the processing and analysis of electron microscopy images of amorphous alloys. The developed algorithms and software tools demonstrate promising results in this area, facilitating detailed studies of atomic structure and degree of orderliness.
全文:

作者简介
Dagim Dilla
Far Eastern Federal University
编辑信件的主要联系方式.
Email: dilla.d@dvfu.ru
ORCID iD: 0000-0002-9100-1257
SPIN 代码: 7200-1921
postgraduate student, Institute of Mathematics and Computer Technologies; research engineer, Electron Microscopy and Imaging Laboratory
俄罗斯联邦, VladivostokEvgeniy Pustovalov
Far Eastern Federal University
Email: pustovalov.ev@dvfu.ru
ORCID iD: 0000-0003-1036-3975
SPIN 代码: 6192-2432
Dr. Sci. (Phys.-Math.); Professor, Department of Information and Computer Systems, Institute of Mathematics and Computer Technologies; Head of the educational program 09.03.02 “Information systems and technologies”, profile “Programming of robotic systems”
俄罗斯联邦, VladivostokIrina Artemeva
Far Eastern Federal University
Email: artemeva.il@dvfu.ru
ORCID iD: 0000-0003-2088-5259
SPIN 代码: 8161-1313
Dr. Sci. (Eng.), Professor; deputy Director for Scientific Works, Institute of Mathematics and Computer Technology
俄罗斯联邦, Vladivostok参考
- Dyson M.A. Advances in computational methods for transmission electron microscopy simulation and image processing. Abstract of dis. University of Warwick. URL: http://go.warwick.ac.uk/wrap/729437
- Pryor A., Ophus C., Miao J. A streaming multi-GPU implementation of image simulation algorithms for scanning transmission electron microscopy. Advanced Structural and Chemical Imaging. 2017. No. 3 (15). doi: 10.1186/s40679-017–0048-z.
- Roy S., Prabhat L.Q., Tran L., Ang L.K. Parallel programming for electron microscopy image processing // Proceedings of the International Conference on Parallel Processing. ACM, 2019. Pp. 1–9.
- Xu Y., Li W., Fu Y. et al. Parallel implementation of RELION on GPU-accelerated clouds for efficient single-particle cryo-EM. Journal of Structural Biology. 2021. No. 213 (3). P. 107762.
- Jian L., Wang C., Liu Y. et al. Parallel data mining techniques on Graphics Processing Unit with Compute Unified Device Architecture (CUDA). J. Supercomput. 2013. No. 64. Pp. 942–967. doi: 10.1007/s11227-011-0672-7.
- Gault B., Moody M.P., Cairney J.M., Ringer S.P. Atom probe microscopy. Springer Science & Business Media, 2012. doi: 10.1007/978-1-4614-3436-8.
- Kirkland E.J. Advanced computing in electron microscopy. Springer, 2010. 289 p.
- Ronneberger O., Fischer P., Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer Cham, 2015. Pp. 234–241. doi: 10.1109/TPDS.2020.2975562.
- Scheres S., Nunez-Ramirez R., Sorzano C. et al. Image processing for electron microscopy single-particle analysis using XMIPP. Nat. Protoc. 2008. No. 3. Pp. 977–990. doi: 10.1038/nprot.2008.62.
- Pustovalov E.V., Plotnikov V.S., Grudin B.N. et al. Electron tomography algorithms in scanning transmission electron microscopy. Bull. Russ. Acad. Sci. Phys. 2013. No. 77. Pp. 995–998. doi: 10.3103/S1062873813080340
- Sorzano C.O.S., Vilas J.L., Cuenca-Alba J. et al. Statistical image analysis in electron microscopy. In: Biophysics and the challenges of life. Springer, Cham. 2018. Pp. 79–98.
- Dilla D.S., Pustovalov E.V., Fedorets A.N. Advanced electron microscopy image processing for analyzing amorphous alloys: Electron Microscopy Image Cluster Analyzer (EMICA). Tool and results. Computational Nanotechnology. 2024. Vol. 11. No. 1. Pp. 104–111. doi: 10.33693/2313-223X-2024-11-1-104–111. EDN: DYNPTQ.
- Dilla D.S., Pustovalov E.V., Fedorets A.N., Frolov A.M. Exploring amorphous alloys: Advanced electron microscopy and cluster analysis. Computational Nanotechnology. 2024. Vol. 11. No. 1. Pp. 112–120. doi: 10.33693/2313-223X-2024-11-1-112–120. EDN: DYUGCI.
- Zhu Y., Ouyang Q., Xu Y. A deep convolutional neural network approach to single-particle recognition in cryo-electron microscopy. BMC Bioinformatics. 2017. No. 18 (1). Pp. 1–9. doi: 10.1186/s12859-017–1757-y.
- Ophus C. A fast image simulation algorithm for scanning transmission electron microscopy. Adv. Struct. Chem. Imag. 2017. No. 3. P. 13. doi: 10.1186/s40679-017-0046-1.
补充文件
