The Influence of Ionizing Radiation on the Thermo-oxidative Stabilization Processes of the PAN Precursor for Carbon Fiber Production. Review

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅或者付费存取

详细

Currently, issues related to reducing costs and improving environmental efficiency are becoming increasingly relevant in the process of carbon fiber production. The article presents the results of research and developments conducted over the past few decades in the field of using ionizing radiation for the pre-treatment of polyacrylonitrile fiber (PAN) before thermo-oxidative stabilization in production, aimed at reducing the cost of technology and improving the properties of the resulting carbon fibers. The processes of free radical formation and the mechanisms of cyclization initiation of irradiated fibers are discussed.

全文:

受限制的访问

作者简介

Shavkat Nurmatov

Institute of Material Science of the Physics-Sun SPA of the Academy of Sciences of Uzbekistan

Email: sh.nurmatov@imssolar.uz
ORCID iD: 0000-0002-7206-5220
Scopus 作者 ID: 12039741100

Cand. Sci. (Eng.), Senior Researcher, Deputy of Science

乌兹别克斯坦, Tashkent

Marina Rumi

Institute of Material Science of the Physics-Sun SPA of the Academy of Sciences of Uzbekistan

Email: marinarumi@yandex.ru
ORCID iD: 0000-0002-7895-1688
SPIN 代码: 6412-2848

Cand. Sci. (Chem.), Senior Researcher of the Laboratory of Heat-Accumulating, Heat-Insulating Materials and Solar Technologies

乌兹别克斯坦, Tashkent

Ella Urazaeva

Institute of Material Science of the Physics-Sun SPA of the Academy of Sciences of Uzbekistan

Email: panch100@yandex.ru
ORCID iD: 0000-0002-4769-3911
SPIN 代码: 5271-6086
Scopus 作者 ID: 8609839500

Junior Researcher of the Laboratory of Heat-Accumulating, Heat-Insulating Materials and Solar Technologies

乌兹别克斯坦, Tashkent

Mars Zufarov

Institute of Material Science of the Physics-Sun SPA of the Academy of Sciences of Uzbekistan

Email: marsuz@mail.ru
ORCID iD: 0000-0002-4518-5139
SPIN 代码: 5586-2755
Scopus 作者 ID: 6602113597

Junior Researcher of the Laboratory of Heat-Accumulating, Heat-Insulating Materials and Solar Technologies

乌兹别克斯坦, Tashkent

Elvira Mansurova

Institute of Material Science of the Physics-Sun SPA of the Academy of Sciences of Uzbekistan

Email: elvirauz@mail.ru
ORCID iD: 0000-0003-1286-3228
SPIN 代码: 5485-8627
Scopus 作者 ID: 6603604220

Junior Researcher of the Laboratory of Heat-Accumulating, Heat-Insulating Materials and Solar Technologies

乌兹别克斯坦, Tashkent

Sukhrob Gulmatov

Institute of Material Science of the Physics-Sun SPA of the Academy of Sciences of Uzbekistan

Email: suxrobgulmatov16024@gmail.com
ORCID iD: 0009-0001-4492-5641

Junior Researcher of the Laboratory of Solar Technologies and Nanostructured Functional Materials

乌兹别克斯坦, Tashkent

Izzat Mirzohidov

Institute of Material Science of the Physics-Sun SPA of the Academy of Sciences of Uzbekistan

Email: mirzokhidovizzat@gmail.com
ORCID iD: 0009-0007-7331-6443

Specialist of the Laboratory of Light and Extremely Durable Alternative Energy from Carbon Fiber

乌兹别克斯坦, Tashkent

Navruzbek Kenjayev

Institute of Material Science of the Physics-Sun SPA of the Academy of Sciences of Uzbekistan

Email: navruzbekenjayev@gmail.com
ORCID iD: 0009-0004-6062-6344

Research Intern

乌兹别克斯坦, Tashkent

Rakhimjon Urinboyev

Institute of Material Science of the Physics-Sun SPA of the Academy of Sciences of Uzbekistan

编辑信件的主要联系方式.
Email: rahimjonravshanovich1990@gmail.com

PhD Student

乌兹别克斯坦, Tashkent

参考

  1. Aggour Y.A., Aziz M.S. Degradation of polyacrylonitrile by low energy ion beam and UV radiation. Polymer Testing. 2000. Vol. 19. Pp. 261–267. doi: 10.1016/S0142-9418(98)00087-7.
  2. Aziz M.S., El-Mallah H.M. Influence of low energy Ar+ ion beam and UV-irradiation on A.C. electrical conductivity of polyacrylonitrile. International Journal of Polymeric Materials and Polymeric Biomaterials. 2006. Vol. 55:5. Рр. 307–321. doi: 10.1080/009140390945169.
  3. Cardoso dos Santos L.G., Kawano Y. Degradation of polyacrylonitrile by X-ray radiation. Polymer Degradationand Stability. 1994. Vol. 44. Pp. 27—32.
  4. Chand S. Review carbon fibers for composites. J. Mater. Sci. 2000. Vol. 35 (6). Pp. 1303–1313. doi: 10.1023/A:1004780301489.
  5. Chung Deborah D.L. Carbon fiber composites. Boston, MA, USA: Butterworth-Heinemann, 1994. Pp. 3–65.
  6. Dalton S., Heatley F., Budd P.M. Thermal stabilization of polyacrylonitrile fibres. Polymer. 1999. Vol. 40. Pp. 5531–5543. doi: 10.1016/S0032-3861(98)00778-2.
  7. Ellringmann T., Wilms Ch., Warnecke M. Carbon fiber production costing: a modular approach. Textile Research Journal. 2015. Vol. 2. P. 86. doi: 10.1177/004051751 4532161.
  8. Fitzer E., Edie D.D., Johnson D.J. Carbon fibers-present state and future expectation; Pitch and mesophase fibers. Structure and properties of carbon fibers. In: Carbon fibers filaments and composites. 1st ed. J.L. Figueiredo, C.A. Bernardo, R.T.K. Baker, K.J. Huttinger (eds.). New York, NY, USA: Springer, 1989. Pp. 3–146.
  9. Hasegawa S., Shimizu T. ESR Studies on Pyrolyzed and Irradiated Polyacrylonitrile. Japan J. Appl. Phys. 1970. Vol. 9. P. 958. doi: 10.1143/JJAP.9.958.
  10. Huang Xiaosong. Fabrication and properties of carbon fibers. Materials. 2009. Vol. 2. Pp. 2369–2403. doi: 10.3390/ma2042369.
  11. Jeun Joon-Pyo, Kim Du-Young, Shin Hye-Kyoung et al. Advanced stabilization of PAN fibers for fabrication of carbon fibers by e-beamir radiation. In: Korean nuclear society spring meeting jeju (Korea, May 17–18, 2012). Pp. 820–821.
  12. Jo A.Y., Yoo S.H., Chung Y.-S., Lee S. Effects of ultraviolet irradiation on stabilization of textile-grade polyacrylonitrile fibers without photo-initiator for preparing carbon fibers. Carbon. 2019. Vol. 144. Pp. 440–448. doi: 10.1016/j.carbon.2018.12.012.
  13. Ju A.Q., Guang S.Y., Xu H.Y. Effect of comonomer structure on the stabilization and spinnability of polyacrylonitrile copolymers. Carbon. 2013. Vol. 54. Pp. 323–335. doi: 10.1016/j.carbon.2012.11.044.
  14. Kim So-Young, Lee Sungho, Park Sejoon et al. Continuous and rapid stabilization of polyacrylonitrile fiber bundles assisted by atmospheric pressure plasma for fabricating large-tow carbon fibers. Carbon. 2015. Vol. 94. Pp. 412–416. doi: 10.1016/j.carbon.2015.07.012.
  15. Lee Hwayoung, Lee Lo-Woon, Lee Seung-Wook et al. Effects of drawing process on the structure and tensile properties of textile-grade PAN fiber andits carbon fiber. e-Polymers. 2014. Vol. 14 (3). Pp. 217–224. doi: 10.1515/epoly-2013-0080.
  16. Lee Seung-Wook, Lee Hwa-Young, Jang Sung-Yeon et al. Efficient preparation of carbon fibers using plasma assisted stabilization. Carbon. 2013. Vol. 55. Pp. 361–365. doi: 10.1016/j.carbon.2012.10.062.
  17. Liu Weihua, Wang Mouhua, Xing Zhe, Wu Guozhong. The free radical species in polyacrylonitrile fibers induced by g-radiation and their decay behaviors. Radiation Physics and Chemistry. 2012. Vol. 81. Pp. 835–839. doi: 10.1016/j.radphyschem.2012.03.017.
  18. Miao Peikai, Wu Dimeng, Zeng Ke et al. Influence of electron beam pre-irradiation on the thermal behaviors of polyacrylonitrile. Polymer Degradation and Stability. 2010. Vol. 95. Pp. 1665–1671. doi: 10.1016/j.polymdegradstab.2010.05.028.
  19. Morales M.S., Ogale A.A. UV-induced crosslinking and cyclization of solution-cast polyacrylonitrile copolymer. J. Appl. Polym. Sci. 2013. Vol. 128 (3). Pp. 2081–2088. doi: 10.1002/app.38398.
  20. Morales M.S., Ogale A.A. Wet-spun, photoinitiator-modified polyacrylonitrile precursor fibers: UV-assisted stabilization. J. Appl. Polym. Sci. 2013. Vol. 130. Pp. 2494–2503. doi: 10.1002/APP.39442.
  21. Morales M.S., Ogale A.A. Carbon fibers derived from UV-assisted stabilization of wet-spun polyacrylonitrile fibers. J. Appl. Polym. Sci. 2014. Vol. 131. P. 40623. doi: 10.1002/APP.40623.
  22. Mukundan T., Bhanu V.A., Wiles K.B. et al. A photocrosslinkable melt processible acrylonitrile terpolymer as carbon fiber precursor. Polymer. 2006. Vol. 47. Pp. 4163–4171. doi: 10.1016/j.polymer.2006.02.066.
  23. Naskar A.K, Walker R.A., Proulx S. et al. UV-assisted stabilization routes for carbon fiber precursors produced from melt-processible polyacrylonitrile terpolymer. Carbon. 2005. Vol. 43 (5). Pp. 1065–1072. doi: 10.1016/j.carbon.2004.11.047.
  24. Naskar A.K., Walker R.A, Proulx S. et al. UV-assisted stabilization of melt-processible pan carbon precursor fibers. In: Abstracts of 55th Southeast Regional Meeting of the American Chemical Society (Atlanta, GA, United States, November 16–19, 2003). P. 869.
  25. Park S., Yoo S-H., Kang H. et al. Comprehensive stabilization mechanism of electron-beam irradiated polyacrylonitrile fibers to shorten the conventional thermal treatment. Sci. Rep. 2016. No. 6. P. 27330. doi: 10.1038/srep27330.
  26. Paulauskas F.L., White T.L., Sherman D.M. Apparatus and method for oxidation and stabilization of polymeric materials. US patent, 0263295 A1. 2009.
  27. Peebles L.H. Carbon fibers: Structure and formation. New York, NY, USA: CRC Press, 2017. 218 р. ISBN: 9781315891323.
  28. Yoo Seung Hwa, Park Sejoon, Park Youngkyu et al. Facile method to fabricate carbon fibers from textile-grade polyacrylonitrile fibers based on electron-beam irradiation and its effect on the subsequent thermal stabilization process. Carbon. 2017. Vol. 118. Pp. 106–113. doi: 10.1016/j.carbon.2017.03.039.
  29. Badawy S.M., Dessouki A.M. Cross-linked polyacrylonitrile prepared by radiation-induced polymerization technique. J. Phys. Chem. B. 2003. Vol. 107 (41). Pp. 11273–11279. doi: 10.1021/jp034603j.
  30. Hye Kyoung Shin, Mira Park, Hak-Yong Kim, Park Soo-Jin. An overview of new oxidation methods for polyacrylonitrile based carbon fibers. Carbon Letters. 2015. Vol. 16. No. 1. Pp. 11–18. doi: 10.5714/CL.2015.16.1.011.
  31. Shin Hye Kyoung, Jeun Joon Pyo, Phil Hyun Kang. The characterization of polyacrylonitrile fibers stabilized by electron beam irradiation. Fibers and Polymers. 2012. Vol. 13. No. 6. Pp. 724–728. doi: 10.1007/s12221-012-0724-5.
  32. Shin Hye Kyoung, Park Mira, Kang Phil Hyun, Choi Heung Soap. Preparation and characterization of polyacrylonitrile-based carbon fibers produced by electron beam irradiation pretreatment. Journal of Industrial and Engineering Chemistry. 2014. Vol. 20 (5). Pp. 3789–3792. doi: 10.1016/j.jiec.2013.12.080.
  33. Son Su-Young, Jo A Young, Jung Gun Young et al. Accelerating the stabilization of polyacrylonitrile fibers by UV irradiation. Journal of Industrial and Engineering Chemistry. 2019. Vol. 73. Pp. 47–51. doi: 10.1016/j.jiec.2019.01.012.
  34. Takata T., Hiroi I. Coloration in acrylonitrile polymers. Journal of Polymer Science. Part A. 1964. Vol. 2 (4). Pp. 1567–1585.
  35. Yuan Huiwu, Wang Yansheng, Yu Hong Wei et al. Effect of UV irradiationon PAN precursor fibers and stabilization process. Journal of Wuhan University of Technology-Mater. Sci. Ed. 2011. Vol. 26. Pp. 449–454. doi: 10.1007/s11595-011-0247-8.
  36. Zhou L., Lu Y., Zhao W. et al. Effects of gamma ray irradiation on poly(acrylonitrile-co-methyl acrylate) fibers. Polymer Degradation and Stability. 2016. Vol. 128. Pp. 149–157. doi: 10.1016/j.polymdegradstab.2015.12.015.
  37. Zhao Wenwei, Yamamoto Yukio, Tagawa Seiichi. Regulation of the thermal reactions of polyacrylonitrile by γ-irradiation. Chem. Mater. 1999. Vol. 11. Pp. 1030–1034.

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. Molecular structure of polyacrylonitrile precursor [32]

下载 (28KB)
3. Fig. 2. Structure of oxidized PAN as a result of stabilization in air, reflecting different degrees of oxidation of molecules [4]

下载 (46KB)
4. Fig. 3. Free radical structure used for computer simulations [3]

下载 (14KB)
5. Fig. 4. Thermostabilizing mechanism of PAN fibers irradiated by electrons [25]

下载 (467KB)
6. Fig. 5. Scheme of formation of secondary free radicals under the influence of γ-radiation on copolymer PAN [9]

下载 (111KB)
7. Fig. 6. Cycling initiation mechanism for γ-irradiated PAN fibers during heat treatment [36]

下载 (279KB)
8. Fig. 7. Mechanism of initiation of cycling of heat-treated PAN precursors after electron beam learning [18]

下载 (102KB)