New methods of modified ceramic technology for synthesis of functional nanostructured systems


Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

This review demonstrates the possibilities of aerosol pyrolysis and spray drying methods, after their modification, for the synthesis of non-agglomerated nanoparticles of multicomponent oxides with sizes in the range of 10 - 100 nm. The role in this synthesis of substances NaCl, Na2SO4, KCl, BaB2O4, which do not participate in the synthesis reaction, is shown. In doing so, they form an inert matrix that isolates the crystallization centers from each other. Thus, the intensity of recrystallization processes during heat treatment of nanopowders is suppressed with an increase in their crystallinity without a significant increase in size. A method of thermal vibration milling and equipment for combining the operations of mixing, grinding and firing during the synthesis of powders of multicomponent oxides are proposed. In the case of its use, the temperature ranges of the formation of the reaction products are shifted, and metastable phases appear. The reasons for the increase in the efficiency of solid-phase processes in this case are established.

Texto integral

Acesso é fechado

Sobre autores

Vladimir Pankov

Belarusian State University

Email: pankovbsu@gmail.com
Dr. Sci. (Chem.); Professor at the De-partment of Physical Chemistry Minsk, Republic of Belarus

Dmitry Ivashenko

Belarusian State University

Email: ivashenkodm@gmail.com
Master of Chemistry; postgraduate student at the Department of Physical Chemistry Minsk, Republic of Belarus

Bibliografia

  1. Hawach Scientific Co. Ltd [Electronic resource]. URL: https://www.hawachdryer.com/what-are-the-spray-dryer-parts-and-function/(дата обращения: 04.06.2021).
  2. Panкоv V. Uniform-size Ba-ferrite particles for magnetic media // Materials Science Forum. 1990. Vol. 62-64. Рр. 603-605.
  3. Паньков В.В. Наноразмерные порошки гексаферрита бария и гетероструктуры на его основе // Актуальные проблемы физики твердого тела. Минск. Наука. 2003. С. 163-173.
  4. Башаричев А.В., Окунев И.С., Лебедев В.Т. и др. Исследование СВЧ характеристик микросфер магнетита золы уноса как материала антирадарных покрытий // Сб. статей междунар. конф. «Экологическая, промышленная и энергетическая безопасность», 14-17 сентября 2020, Севастополь. С. 92-1011.
  5. Panкоv V., Pernet M., Germi P., Mollard P. Fine hexaferrite particles for perpendicular recording prepared by the coprecipitation method in the presence of an inert component // Journal of Magnetism and Magnetic Materials. 1993. Vol. 120. Pp. 69-73.
  6. Panкоv V., Fomenko G.V., Chichkanov A.G. Fine particles of coprecipitated hexagonal ferrite for perpendicular magnetic recording media // Book of abstracts of Int. Conf. of Magnetic recording media. Rimini M.R.M. 89. 1989. Р. 89.
  7. Panкоv V.V. Modified aerosol synthesis for nanoscale hexaferrite particles preparation // Mater. Sci. Engineering. 1997. Vol. A224. Pp. 101-107.
  8. Kotsikau D., Ivanovskaya M., Pankov V., Fedotova Y. Structure and magnetic properties of manganese-zinc-ferrites prepared by spray pyrolysis method // Solid State Sci. 2015. Vol. 39. Pp. 69-73.
  9. Bogachev Yu.V., Nikitina A.V., Kostina A.A. et al. NMR relaxation efficiency of aqueous solutions of composite MgxZnyFe3-x-yO4 nanoparticles // Appl. Magn. Reson. 2017. Vol. 48. 715-722.
  10. Wang Y.J. Superparamagnetic iron oxide based MRI contrast agents: Current status of clinical application // Quant. Imaging Med. Surg. 2011. Vol. 1. No. 1. Pp. 35-40.
  11. Ивашенко Д.В., Петрова Е.Г., Миттова И.Я. и др. Альтернативные источники сырья и топлива // Матер. VII Междунар. конф., Минск, 28-30 мая. 2019 г. С. 120-123.
  12. Петрова Е.Г., Шавшукова Я.А., Котиков Д.А. и др. Синтез наноразмерных кобальт-цинковых ферритов методом низкотемпературного распыления с последующим термолизом // Известия академии наук Беларуси. Серия: Химические науки. 2018. Т. 54. № 4. C. 406-412.
  13. Rakhimov R.Kh., Ermakov V.P., Rakhimov M.R. Phonon transformation mechanism in ceramic materials // Comp. nanotechnol. 2017. Vol. 4. Pp 21-35.
  14. Паньков В.В., Летюк Л.М., Башкиров Л.А., Литвинов С.В. Механизм образования марганец-цинковых ферритов в условиях термовибропомола // Порошковая металлургия. 1988. № 11. С. 36-40.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML


Este site utiliza cookies

Ao continuar usando nosso site, você concorda com o procedimento de cookies que mantêm o site funcionando normalmente.

Informação sobre cookies