Modeling chemical and biological systems using stochastic block cellular automata with Markov neighborhood

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Acesso é pago ou somente para assinantes

Resumo

The article is devoted to the description of a new variation of stochastic block cellular automata – the so-called Markov automata, a distinctive feature of which is the dynamic and stochastic formation of blocks. Examples of the simplest models of physical processes built on the basis of this type of automata are given. The expressive possibilities of the introduced model are considered in the article. In particular, through comparison with the Turing machine, the algorithmic universality of Markov automata is shown, which allows them to theoretically perform arbitrarily complex processing of symbol chains. On the other hand, the presence of the so-called mixing substitution subsystem in the system of automata rules leads to a different type of behavior of these automata, the dynamics of which is described by classical kinetic equations for chemical reaction systems. It is shown that the use of special separating symbols (membranes) in the automaton allows combining several different types of behavior in different parts of the same automaton, as well as organizing information interaction between these parts. This technique opens up the possibility of modeling the simplest biological systems – cells. Using the example of a two-dimensional version of the proposed model, it is shown how the basic one-dimensional model can be extended to the case of higher dimensions.

Texto integral

Acesso é fechado

Sobre autores

Nikolay Ershov

Lomonosov Moscow State University

Autor responsável pela correspondência
Email: ershov@cs.msu.ru
ORCID ID: 0000-0001-5963-0419

Cand. Sci. (Phys.-Math.), senior researcher, Department of Computational Mathematics and Cybernetics

Rússia, Moscow

Alexandr Popov

Lomonosov Moscow State University

Email: popov@cs.msu.ru
ORCID ID: 0000-0002-5672-8450

Dr. Sci. (Phys.-Math.), Professor, Department of Computational Mathematics and Cybernetics

Rússia, Moscow

Bibliografia

  1. Dorin A., Stepney S. What is artificial life today, and where should it go? Artificial Life. 2024. No. 30 (1). Pp. 1–15.
  2. Bedau M.A., McCaskill J.S., Packard N.H. et al. Open problems in artificial life. Artificial Life. 2000. No. 6. Pp. 363–376.
  3. Von Neumann J., Burks A.W. Theory of self-reproducing automata. Urbana: University of Illinois Press, 1966.
  4. Dittrich P. Artificial chemistry. In: Computational complexity: Theory, techniques, and applications. A.R. Meyers (ed.). Springer, 2012. Pp. 185–203.
  5. Deutsch A., Dormann S. Cellular automaton modelling of biological pattern formation. Boston: Birkhauser, 2005.
  6. Margolus N. Cellular automata machines: A new environment for modeling. MIT Press, 1987.
  7. Achasova S., Bandman O., Markova V. et al. Parallel substitution algorithm. Theory and application. Singapore: World Scientific, 1994.
  8. Kushner B. The constructive mathematics of A.A. Markov. Amer. Math. Monthly. 2006. No. 113 (6). Pp. 559–566.
  9. Hopcroft J.E., Motwani R., Ullman J.D. Introduction to automata theory, languages, and computation second edition. Addison-Wesley, 2001.
  10. Atkins P., Julio P. The rates of chemical reactions. Atkins' Physical chemistry. 8th ed. W.H. Freeman (ed.). 2006.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1. Scheme of operation of the algorithm M

Baixar (67KB)
3. Fig. 2. Exponential decay model

Baixar (746KB)
4. Fig. 3. Model of diffusion (a) and directed movement (b)

Baixar (1MB)
5. Fig. 4. Simple wave model

Baixar (503KB)
6. Fig. 5. Transformation of a Turing machine into a Markov automaton

Baixar (465KB)
7. Fig. 6. Phase portrait of the predator-prey model

Baixar (206KB)
8. Fig. 7. Combining different types of behavior using impermeable membrane

Baixar (554KB)
9. Fig. 8. Using of semi-impermeable membranes

Baixar (650KB)
10. Fig. 9. Splitting a matrix of symbols into one-dimensional chains

Baixar (139KB)
11. Fig. 10. Two-dimensional version of the diffusion model

Baixar (805KB)
12. Fig. 11. Two-dimensional model of dendritic growth

Baixar (2MB)

Declaração de direitos autorais © Yur-VAK, 2025

Link à descrição da licença: https://www.urvak.ru/contacts/