Задачи определения эффективности для микроструктур SiC*/Si и контактообразования


Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

В работе обсуждается эффективность преобразования энергии радионуклидов в электрическую. В молекулярном составе полупроводниковых структур карбида кремния атомы углерода-14 функционально выполняют роль источника энергии радиохимического распада, а компонент разделения неравновесных носителей полупроводниковой структурой n- или p-типа проводимости способен напрямую преобразовывать эту энергию в электрическую форму. Предлагаемый вариант исполнения бета-преобразователя на радионуклиде С-14 обладает мировой новизной, так как данный радионуклид используется в концентрации на уровне легирующей примеси, замещающей атомы стабильного углерода-12 в молекуле карбида кремния. Присутствие в небольших количествах, один атом радиоизотопа С-14 на тысячу или даже миллион атомов устойчивого радиоизотопа С-12, придает полупроводниковому материалу новые полезные в энергетическом отношении свойства, но одновременно возникает сопутствующая проблема сбора носителей заряда металлизацией контактных площадок, что вероятно связано с изменением работы выхода электрона преобразованного радиоизотопом карбида кремния. Данный фактор определяет эффективность сбора носителей заряда, т.к. точечные прижимные контакты свидетельствуют об эффективности преобразования энергии.

Полный текст

Доступ закрыт

Об авторах

Виктор Иванович Чепурнов

Самарский национальный исследовательский университет имени академика С.П. Королева

Email: chvi44@yandex.ru
кандидат технических наук; доцент кафедры физики твердого тела и неравновесных систем Самара, Российская Федерация

Сали Аширович Раджапов

Физико-технический институт Научно-производственного объединения «Физика-Солнце» Академии наук Республики Узбекистан

Email: rsafti@mail.ru
доктор физико-математических наук; главный научный сотрудник лаборатории полупроводниковых высокочувствительных датчиков Ташкент, Республика Узбекистан

Михаил Вячеславович Долгополов

Самарский национальный исследовательский университет имени академика С.П. Королева; Самарский государственный технический университет

Email: mikhaildolgopolov68@gmail.com
кандидат физико-математических наук, доцент; заведующий совместной с РАН научно-исследовательской лабораторией математической физики НИЛ-319; доцент кафедры высшей математики Самара, Российская Федерация

Галина Владимировна Пузырная

Самарский национальный исследовательский университет имени академика С.П. Королева

Email: vaksa22@gmail.com
инженер 1 категории кафедры физики твердого тела и неравновесных систем Самара, Российская Федерация

Альбина Валентиновна Гурская

Самарский государственный технический университет; Межвузовский научно-исследовательский центр по теоретическому материаловедению

Email: a-gurska@yandex.ru
кандидат физико-математических наук; доцент кафедры высшей математики; старший научный сотрудник Самара, Российская Федерация

Список литературы

  1. Rappaport P. The electron-voltaic effect in p-n-junctions induced by beta-particle bombardment // Physical Review. 1954. Vol. 93 (1). Pp. 246-247.
  2. Olsen L.C., Seeman S.E., Griffen B.I. Betavoltaic nuclear electric power sources // Trans. Electron Devices. 1969. Vol. 12. 481 p.
  3. Гусев В.В. и др. Особенности преобразования энергии радиоактивного распада в электрическую с использованием кремниевых полупроводников с p-n-переходом // Радиационная техника. 1975. Вып. 11. С. 61-67.
  4. Лазаренко Ю.В., Пустовалов А.А., Наповалов В.П. Малогабаритные ядерные источники электрической энергии. М.: Энергоатомиздат, 1992.
  5. SityLabs [сайт]. URL: http://www.citylabs.net
  6. Патент Российской Федерации RU N 2461915 МПК.H01L31/04 «Ядерная батарейка».
  7. Патент РФ № 2452060 МПК.H01L31/04 G01H 1/00 «Полупроводниковый преобразователь бета-излучения в электроэнергию».
  8. Лучинин В., Таиров Ю. Отечественный полупроводниковый карбид кремния: шаг к паритету // Современная электроника. 2009. № 7. С. 12-15.
  9. Краснов А.А., Трощиев С.Ю. Разработка бета-вольтаического элемента на основе синтетического алмаза и оценка его электрических параметров // Электронная техника. Серия 2: Полупроводниковые приборы. 2016. Т. 2 (241). C. 21-31.
  10. Абанин И.Е. Выбор активных слоев источника питания с р-n-переходом, возбуждаемым β-излучением // Нано- и микросистемная техника. 2015. № 10 (183). С. 3-10.
  11. Горбацевич А.А. и др. Исследование (моделирование) Ni-63 бета-вольтаических батарей на основе кремниевых солнечных элементов // Журнал технической физики. 2016. Т. 86 (7). С. 94-99.
  12. Булярский С.В. и др. Оптимизация параметров источников питания, возбуждаемых β-излучением // Физика и техника полупроводников. 2017. Т. 51 (1). С. 68-74.
  13. Нагорнов Ю.С. Расчет эффективности элементов питания на основе микроканального кремния и бета-источника никель-63 // Известия высших учебных заведений. Поволжский регион. Физико-математические науки. 2013. № 3 (27). C. 136-145.
  14. Nagornov Y.S., Murashev V.N. Simulation of the β-voltaic effect in silicon pin structures irradiated with electrons from a Nickel-63 β source // Semiconductors. 2016. Vol. 50 (1). Pp. 16-21.
  15. Нагорнов Ю.С. Моделирование элементов бета-вольтаики на изотопе никель-63. Ульяновск, 2015.
  16. Булярский С.В. и др. Напряжение холостого хода бета-батарей на основе кремниевых p-i-n-диодов // Нано- и микросистемная техника. 2016. Т. 18. № 6. С. 391-400.
  17. Katz D., Akiyama T. Pacemaker longevity: The world’s longest-lasting VVI Pacemaker // Annals of Noninvasive Electrocardiology. 2017. Vol. 12 (3). Pp. 223-226.
  18. Акульшин Ю.Д. и др. Бета-вольтаический МЭМС-преобразователь энергии // Научно-технические ведомости СПбГПУ. Информатика. Телекоммуникации. Управление. 2014. № 5 (205). С. 35-42.
  19. Dreizler R., Gross E. Density functional theory. New York: Plenum Press, 1995.
  20. Koch W., Holthausen M.C. A chemist’s guide to density functional theory. Weinheim: Wiley-VCH, 2002.
  21. Jiang Z. et al. Ab initio calculation of SiC polytypes // Solid State Communications. 2002. Vol. 123 (6-7). Pp. 263-266.
  22. Cicero G., Catellani A. Towards SiC surface functionalization: An ab initio study // J. Chem Phys. 2005. Vol. 122. P. 214716.
  23. Jiang M. et al. Ab initio molecular dynamics simulation of the effects of stacking faults on the radiation response of 3C-SiC // Sci Rep. 2016. Vol. 6. P. 20669.
  24. Zhou H. et al. Ab initio electronic transport study of two-dimensional silicon carbide-based p-n junctions // Journal of Semiconductors. 2017. Vol. 38 (3). P. 033002.
  25. Ardakani Y.S., Moradi M. Electronic and optical properties of Te-doped GaN monolayer before and after adsorption of dimethylmercury - DFT+U/TDDFT & DFT-D2 methods // Journal of Molecular Graphics and Modelling. 2021. Vol. 104. P. 107837.
  26. Liu N., Wang W., Guo L. Superconductivity in nitrogen-doped 3C-SiC from first-principles calculations // Modern Physics Letters B. 2017. No. 31 (12). P. 1750116.
  27. Poloni R. et al. Efficient first-principles method for structural studies of materials with substitutional disorder // Phys.: Condens. Matter. 2010. No. 22. P. 415401.
  28. Yilun Gong, Grabowski B., Glensk A. et al. Temperature dependence of the Gibbs energy of vacancy formation of fcc Ni // Phys. Rev. B. No. 97. P. 214106.
  29. Emery A., Wolverton C. High-throughput DFT calculations of formation energy, stability and oxygen vacancy formation energy of ABO3 perovskites // Sci Data. 2017. No. 4. P. 170153.
  30. Grau-Crespo R. et al. Symmetry-adapted configurational modelling of fractional site occupancy in solids // Journal of Physics: Condensed Matter. 2007. No. 19 (25). P. 256201
  31. Okhotnikov K., Charpentier T., Cadars S. Supercell program: A combinatorial structure-generation approach for the local-level modeling of atomic substitutions and partial occupancies in crystals // J. Cheminformatics. 2016. No. 8. P. 17.
  32. Lee J., Seko A., Shitara K., Nakayama K., Tanaka I. Prediction model of band gap for inorganic compounds by combination of density functional theory calculations and machine learning techniques // Phys. Rev. B. No. 93. P. 115104.
  33. Ferreño D. et al. Prediction of mechanical properties of rail pads under in-service conditions through machine learning algorithms // Advances in Engineering Software. 2021. Vol. 151. P. 102927.
  34. Huang J.S., Liew J.X., Liew K.M. Data-driven machine learning approach for exploring and assessing mechanical properties of carbon nanotube-reinforced cement composites // Composite Structures. 2021. Vol. 267. P. 113917/
  35. Jie Xiong et al. Machine learning of phases and mechanical properties in complex concentrated alloys // Journal of Materials Science & Technology. 2021. Vol. 87. Pp. 133-142.
  36. Prelas M. et al. Nuclear batteries and radioisotopes. Springer International Publishing, 2016. 335 p.
  37. Покоева В.А., Сивакова К.П. Особенности диффузионного легирования структуры 81С/81 для полупроводниковых СВЧ - датчиков фосфором и бором под действием внутреннего электрического поля // Физика волновых процессов и радиотехнических систем. 2007. Т. 10. № 2. С. 110-114.
  38. Тейтельбаум А.З., Ходунова А.В. Одномерное моделирование процессов ионного легирования и диффузионного перераспределения примесей в кремнии // Электронная промышленность. 1984. № 9. С. 41-45.
  39. Галанин Н.П., Малкович Р.Ш. Математическое моделирование диффузии двух заряженных примесей в полупроводнике с учетом внутреннего электрического поля // ФТП. 1995. Т. 20. № 5. С. 1451-1456.
  40. Гурская А.В., Чепурнов В.И., Латухина Н.В., Долгополов М.В. Способ получения пористого слоя гетероструктуры карбида кремния на подложке кремния. Патент РФ № 2653398. Oпубл. 24.01.2018. Бюл. № 3.
  41. Долгополов М.В, Сурнин О.Л., Чепурнов В.И. Устройство генерирования электрического тока посредством преобразования энергии радиохимического бета-распада С-14. Патент РФ № 2714690. Опубл. 19.02.2020. Бюл. № 5.
  42. Сурнин О.Л., Чепурнов В.И. Карбид кремния: материал для радиоизотопного источника энергии. Патент на изобретение № 2733616 C2, Опубл. 05.10.2020. Заявка № 2020110496 от 11.03.2020.
  43. Гурская А.В., Долгополов М.В., Чепурнов В.И. 14C бета-преобразователь // Физика элементарных частиц и атомного ядра. 2017. Т. 48. № 6. С. 901-909.
  44. Сауров А.Н., Булярский С.В., Рисованый В.Д. и др. Наноструктурированные источники тока, возбуждаемые β-излучением, на основе углеродных нанотрубок // Известия высших учебных заведений. Электроника. 2015. Т. 20. № 5.
  45. Имамов Э.З., Джалалов Т.А., Муминов Р.А., Рахимов Р.Х. Отличительные особенности контактных структур с наноразмерными включениями полупроводниковых фотодиодов // Comp. nanotechnol. 2016. № 3. С. 196-202.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML


Данный сайт использует cookie-файлы

Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie, которые обеспечивают правильную работу сайта.

О куки-файлах