Efficiency determination problems for SiC*/Si microstructures and contact formation


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

The paper discusses the efficiency of converting radionuclide energy into electrical energy inside a semiconductor structure in the context of the betavoltaic application. In the molecular composition of Silicon Carbide semiconductor structures, Carbon-14 atoms functionally serve as the source of radiochemical decay energy, and the conductivity component of the n- or p-type semiconductor structure is able to directly convert this energy into electrical form. The proposed version of the beta-converter based on the C-14 radionuclide has a worldwide novelty, since this radionuclide is used in the concentration at the level of an alloying impurity that replaces the stable Carbon-12 atoms in the Silicon Carbide molecule. The presence in small quantities, one atom of the radioisotope C-14 per thousand or even a million atoms of the stable radioisotope C-12, gives the semiconductor material new energy-useful properties. The manifestations of the betavoltaic effect when replacing Silicon Carbide C-12 with radionuclide C-14 in a molecule determine the efficiency and choice of the contact formation options for practical use of charge generation in Silicon Carbide heterostructures.

全文:

受限制的访问

作者简介

Viktor Chepurnov

Samara National Research University named after Academician S.P. Korolev

Email: chvi44@yandex.ru
Cand. Sci. (Eng.); associate professor at the Department of Solid State Physics and Non-Equilibrium Systems Samara, Russian Federation

Sali Rajapov

Institute of Physics and Technology of the Scientific and Production Association “Physics-Sun” of the Academy of Sciences of the Republic of Uzbekistan

Email: rsafti@mail.ru
Dr. Sci. (Phys.-Math.); Chief Researcher at the Laboratory of Semiconductor High-sensitivity Sensors Tashkent, Republic of Uzbekistan

Mikhail Dolgopolov

Samara National Research University named after Academician S.P. Korolev; Samara State Technical University

Email: mikhaildolgopolov68@gmail.com
Cand. Sci. (Phys.-Math.), Associate Professor; Head at the Joint Research Laboratory of Mathematical Physics NIL-319; associate professor at the Department of Higher Mathematics Samara, Russian Federation

Galina Puzyrnaya

Samara National Research University named after Academician S.P. Korolev

Email: vaksa22@gmail.com
engineer of the 1st category at the Department of Solid State Physics and Non-Equilibrium Systems Samara, Russian Federation

Albina Gurskaya

Samara State Technical University; Interuniversity Research Center for Theoretical Materials Science

Email: a-gurska@yandex.ru
Cand. Sci. (Phys.-Math.); associate professor at the Department of Higher Mathematics; senior researcher at the Interuniversity Research Center for Theoretical Materials Science Samara, Russian Federation

参考

  1. Rappaport P. The electron-voltaic effect in p-n-junctions induced by beta-particle bombardment // Physical Review. 1954. Vol. 93 (1). Pp. 246-247.
  2. Olsen L.C., Seeman S.E., Griffen B.I. Betavoltaic nuclear electric power sources // Trans. Electron Devices. 1969. Vol. 12. 481 p.
  3. Gusev V.V. et al. Features of the conversion of radioactive decay energy into electrical energy using silicon semiconductors with a p-n junction. Radiacionnaya tekhnika. 1975. No. 11. Pp. 61-67. (In Rus.)
  4. Lazarenko YU.V., Pustovalov A.A., Napovalov V.P. Small-sized nuclear power sources. Мoscow: Energoatomizdat, 1992.
  5. SityLabs [сайт]. URL: http://www.citylabs.net
  6. Patent of the Russian Federation RU No. 2461915 IPC.H01L 31/04 “Nuclear battery”.
  7. RF Patent No. 2452060 IPC.H01L 31/04 G01H 1/00 “Semiconductor converter of beta radiation into electricity”.
  8. Luchinin V., Tairov Yu. Domestic semiconductor silicon carbide: A step towards parity. Sovremennaya elektronika. 2009. No. 7. Pp. 12-15. (In Rus.)
  9. Krasnov A.A., Troshchiev S.Y. Synthetic diamond betavoltaic element design and electrical evaluation. Electronic engineering. Series 2: Semiconductor devices. 2016. No. 2 (241). Pp. 21-31. (In Rus.)
  10. Abanin I.E. Selection of active layers for a power supply device with p-n-junction excited by β-radiation. Nano- and microsystems technology. 2015. No. 10 (183). Pp. 3-10. (In Rus.)
  11. Gorbatsevich A.A. et al. Analysis (simulation) of Ni-63 beta-voltaic cells based on silicon solar cells. Technical Physics. 2016. No. 61 (7). Pp. 1053-1059. (In Rus.)
  12. Bulyarskiy S.V. et al. Optimization of the parameters of power sources excited by β-radiation. Semiconductors. 2017. No. 51 (1). Pp. 66-72. (In Rus.)
  13. Nagornov Y.S. The calculation of the efficiency of batteriesbased on microchannel silicon and Nickel-63 as a beta-source. Izvestiya vysshih uchebnyh zavedenij. Povolzhskij region. Fiziko-matematicheskie nauki. 2013. No. 3 (27). Pp. 136-145. (In Rus.)
  14. Nagornov Y.S., Murashev V.N. Simulation of the β-voltaic effect in silicon pin structures irradiated with electrons from a Nickel-63 β source // Semiconductors. 2016. Vol. 50 (1). Pp. 16-21.
  15. Nagornov Y.S Modeling of betavoltaics elements on the Nickel-63 isotope. Ulyamovsk. 2015.
  16. Bulyarskiy S.V. et al. Open circuit voltage of the beta-cells based on silicon p-i-n diodes. Nano- and microsystems technology. 2016. No. 18 (6). Pp. 391-400. (In Rus.)
  17. Katz D., Akiyama T. Pacemaker longevity: The world’s longest-lasting VVI Pacemaker // Annals of Noninvasive Electrocardiology. 2017. Vol. 12 (3). Pp. 223-226.
  18. Akulshin Yu.D., Lurie M.S., Piatyshev E.N. et al. Beta-voltaic mems converter. St. Petersburg Polytechnical University Journal. Computer Science. Telecommunication and Control Sys. 2014. No. 5 (205). Pp. 35-42. (In Rus.)
  19. Dreizler R., Gross E. Density functional theory. New York: Plenum Press, 1995.
  20. Koch W., Holthausen M.C. A chemist’s guide to density functional theory. Weinheim: Wiley-VCH, 2002.
  21. Jiang Z. et al. Ab initio calculation of SiC polytypes // Solid State Communications. 2002. Vol. 123 (6-7). Pp. 263-266.
  22. Cicero G., Catellani A. Towards SiC surface functionalization: An ab initio study // J. Chem Phys. 2005. Vol. 122. P. 214716.
  23. Jiang M. et al. Ab initio molecular dynamics simulation of the effects of stacking faults on the radiation response of 3C-SiC // Sci Rep. 2016. Vol. 6. P. 20669.
  24. Zhou H. et al. Ab initio electronic transport study of two-dimensional silicon carbide-based p-n junctions // Journal of Semiconductors. 2017. Vol. 38 (3). P. 033002.
  25. Ardakani Y.S., Moradi M. Electronic and optical properties of Te-doped GaN monolayer before and after adsorption of dimethylmercury - DFT+U/TDDFT & DFT-D2 methods // Journal of Molecular Graphics and Modelling. 2021. Vol. 104. P. 107837.
  26. Liu N., Wang W., Guo L. Superconductivity in nitrogen-doped 3C-SiC from first-principles calculations // Modern Physics Letters B. 2017. No. 31 (12). P. 1750116.
  27. Poloni R. et al. Efficient first-principles method for structural studies of materials with substitutional disorder // Phys.: Condens. Matter. 2010. No. 22. P. 415401.
  28. Yilun Gong, Grabowski B., Glensk A. et al. Temperature dependence of the Gibbs energy of vacancy formation of fcc Ni // Phys. Rev. B. No. 97. P. 214106.
  29. Emery A., Wolverton C. High-throughput DFT calculations of formation energy, stability and oxygen vacancy formation energy of ABO3 perovskites // Sci Data. 2017. No. 4. P. 170153.
  30. Grau-Crespo R. et al. Symmetry-adapted configurational modelling of fractional site occupancy in solids // Journal of Physics: Condensed Matter. 2007. No. 19 (25). P. 256201
  31. Okhotnikov K., Charpentier T., Cadars S. Supercell program: A combinatorial structure-generation approach for the local-level modeling of atomic substitutions and partial occupancies in crystals // J. Cheminformatics. 2016. No. 8. P. 17.
  32. Lee J., Seko A., Shitara K., Nakayama K., Tanaka I. Prediction model of band gap for inorganic compounds by combination of density functional theory calculations and machine learning techniques // Phys. Rev. B. No. 93. P. 115104.
  33. Ferreño D. et al. Prediction of mechanical properties of rail pads under in-service conditions through machine learning algorithms // Advances in Engineering Software. 2021. Vol. 151. P. 102927.
  34. Huang J.S., Liew J.X., Liew K.M. Data-driven machine learning approach for exploring and assessing mechanical properties of carbon nanotube-reinforced cement composites // Composite Structures. 2021. Vol. 267. P. 113917/
  35. Jie Xiong et al. Machine learning of phases and mechanical properties in complex concentrated alloys // Journal of Materials Science & Technology. 2021. Vol. 87. Pp. 133-142.
  36. Prelas M. et al. Nuclear batteries and radioisotopes. Springer International Publishing, 2016. 335 p.
  37. Pokoeva V.A., Sivakova K.P. Features diffusion doping SiC/Si structures for semiconductor microwave sensors phosphorus and boron under the influence of the internal electric field. Physics of wave processes and radio systems. 2007. Vol. 10. No. 2. Pp. 110-114. (In Rus.)
  38. Teitelbaum A.Z., Khodunov A.V. One-dimensional modeling of the processes of ion doping and diffusion redistribution of impurities in silicon. Elektronnaya promyshlennost. 1984. Vol. 9 (137). Pp. 41-45. (In Rus.)
  39. Galanin N.P., Malkovich R.Sh. Mathematical modeling of diffusion of two charged impurities in the semiconductor with the internal electric field. FTP. 1995. Vol. 20. No. 5. Pp. 1451-1456. (In Rus.)
  40. Gurskaya A.V., Chepurnov V.I., Latukhina N.V., Dolgopolov M.V. Method for obtaining a porous layer of Silicon Carbide heterostructure on a Silicon Substrate. Patent of the Russian Federation No. 2653398. Publ. 24.01.2018. Byul. No. 3.
  41. Dolgopolov M.V., Surnin O.L., Chepurnov V.I. Device for generating electric current by converting the energy of radiochemical beta decay of C-14. Patent of the Russian Federation No. 2714690. Publ. 19.02.2020. Byul. No. 5.
  42. Surnin O.L., Chepurnov V.I. Silicon Carbide: The material for the radioisotope energy source. Patent for the invention 2733616 C2, 05.10.2020. Application No. 2020110496 dated 11.03.2020.
  43. Gurskaya A.V., Dolgopolov M.V., Chepurnov V.I. C-14 beta converter. Phys. Part. Nuclei. 2017. No. 48. Pp. 941-944. (In Rus.) URL: https://doi.org/10.1134/S106377961706020X
  44. Saurov A.N., Bulyarskiy S.V., Risovaniy V.D. et al. Nanostructured current sources excited by β-radiation based on carbon nanotubes. Proceedings of Universities. Electronics. 2015. Vol. 20. No. 5. Pp. 474-480. (In Rus.)
  45. Imamov E.Z., Djalalov T.A., Muminov R.A., Rakhimov R.Kh. The difference between the contact structure with nanosize inclusions from the semiconductor photodiodes. Comp. nanotechnol. 2016. No. 3. Pp. 196-202.

补充文件

附件文件
动作
1. JATS XML


##common.cookie##