Mathematical modeling of the spread of COVID-19 in Moscow


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

To model the spread of COVID-19 coronavirus in Moscow, a discrete logistic equation describing the increase in the number of cases was used. To verify the adequacy of the mathematical model, the simulation results were compared with the spread of coronavirus in China. The parameters of the logistics equation for Moscow on the interval [01.03-08.04] were defined. A comparison of growth rates of the number of infected COVID-19 for a number of European, Asian countries and the USA is given. Four scenarios of the spread of COVID-19 in Moscow were considered. For each scenario, curves of the increase in the number of infected people and graphs of the increase in the total number of cases were obtained, and the dynamics of infection spread by day was studied. Peak times, epidemic periods, the number of infected people at the peak and their growth were determined.

全文:

受限制的访问

作者简介

Eleonora Koltsova

Mendeleev University of Chemical Technology of Russia

Email: kolts@muctr.ru
Doctor of Engineering, Professor; Head of Department IСT Moscow, Russian Federation

Elena Kurkina

Mendeleev University of Chemical Technology of Russia; Lomonosow Moscow State University

Email: e.kurkina@rambler.ru
Doctor of Physics and Mathematics, Associate Professor; professor of Department IСT; leading researcher of Department BMK Moscow, Russian Federation

Aleksey Vasetsky

Mendeleev University of Chemical Technology of Russia

Email: amvas@muctr.ru
senior lecturer of Department IСT Moscow, Russian Federation

参考

  1. Verhulst P.F. Mathematical researches into the law of population growth increase. Nouveaux Mémoires de l’Académie Royale des Sciences et Belles-Lettres de Bruxelles. 1845. Vol. 18. Pp. 1-42.
  2. Malthus T.R. An essay on the principle of population as it affects the future improvement of society, with remarks on the speculations of Mr M. Godwin // Condorcet, and other writers. London: J. Johnson. 1798.
  3. Pearl R., Reed L.J. On the rate of growth of the population of the United States since 1790 and its mathematical representation. Proceedings of the National Academy of Sciences of the United States of America. 1920. Vol. 6. No. 6. P. 275.
  4. Ризниченко Г.Ю. Математические модели в биологии. М.- Ижевск: РХД. 2002.
  5. Ризниченко Г.Ю., Рубин А.Б. Математические методы в биологии и экологии. Биофизическая динамика продукционных процессов: учебник для бакалавриата и магистратуры. В 2 ч. Ч. 2. 3-е изд., перераб. и доп. М.: Юрайт, 2018. 185 с. (Серия: Университеты России).
  6. Cherniha R., Davydovych V. A mathematical model for the coronavirus COVID-19 outbreak. arXiv preprint arXiv: 2004.01487. 2020.
  7. Qi C. et al. Model studies on the COVID-19 pandemic in Sweden. arXiv preprint arXiv: 2004.01575. 2020.
  8. Фейгенбаум М. Универсальность в поведении нелинейных систем // Успехи физических наук. 1983. Т. 141. № 10. С. 343-374.
  9. Кольцова Э.М., Гордеев Л.С. Методы синергетики в химии и химической технологии. М.: Химия, 1999. 256 c.
  10. Кольцова Э.М., Третьяков Ю.Д., Гордеев Л.С., Вертегел А.А. Нелинейная динамика и термодинамика необратимых процессов в химии и химической технологии. М.: Химия, 2001.
  11. URL:htt s://en.wikipedia.org/wiki/Template:2019%E2%80%9320_ coronavirus_pandemic_data/Mainland_China_medical_cases
  12. URL: https://www.worldometers.info/coronavirus/
  13. URL: https://ncov.blog/countries/ru/77/

补充文件

附件文件
动作
1. JATS XML


##common.cookie##