Pulse Tunneling Effect. Features Interaction with Substance

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅或者付费存取

详细

The article discusses the phenomenon of pulsed tunneling effect and its application to various processes, including laser radiation generation and hydrogen production from water vapor. Various mechanisms of laser operation, in particular the CO2 laser, are considered, and it is assumed that the pulsed tunnel effect can explain their high efficiency. The interaction of the pulsed tunnel effect with matter and the possibility of its use to increase the efficiency of various processes, including the synthesis of environmentally friendly hydrogen, are analyzed.

全文:

受限制的访问

作者简介

Rustam Rakhimov

Institute of Materials Science of the SPA “Physics-Sun” of the Academy of Science of Uzbekistan

编辑信件的主要联系方式.
Email: rustam-shsul@yandex.com
ORCID iD: 0000-0001-6964-9260
SPIN 代码: 3026-2619

Dr. Sci. (Eng.), Head, Laboratory No. 1

乌兹别克斯坦, Tashkent

Vladimir Yermakov

Institute of Materials Science of the SPA “Physics-Sun” of the Academy of Science of Uzbekistan

Email: labimanod@uzsci.net
ORCID iD: 0000-0002-0632-6680
SPIN 代码: 8907-1685

senior research, Laboratory No. 1

乌兹别克斯坦, Tashkent

参考

  1. Rakhimov R.Kh. Possible mechanism of pulsed quantum tunneling effect in photocatalysts based on nanostructured functional ceramics. Computational Nanotechnology. 2023. Vol. 10. No. 3. Pp. 26–34. doi: 10.33693/2313- 223X-2023-10-3-26-34. EDN: QZQMCA.
  2. Rakhimov R.Kh. Pulsed tunneling effect: Fundamentals and application prospects. Computational Nanotechnology. 2024. Vol. 11. No. 1. Pp. 193–213. (In Rus.). doi: 10.33693/2313-223X-2024-11- 1-193-213. EDN: EWSBUT
  3. Witteman V. CO2-laser. Moscow: Mir, 1990. 360 p.
  4. Goldansky V.I., Trakhtenberg L.I., Flerov V.N. Tunneling phenomena in chemical physics. Moscow: Nauka, 1986. 296 p.
  5. Blokhintsev D.I. Fundamentals of quantum mechanics. 4th ed., Moscow, 1963.
  6. Landau L.D., Lifshitz E.M. Quantum mechanics (non-relativistic theory). In: Theoretical Physics. 3rd ed., rev. and suppl. Moscow: Nauka, 1974. Vol. III. 752 p.
  7. Razavy M. Quantum theory of tunneling. 2nd ed. Singapore: World Scientific Publishing Co., 2013. 820 с. ISBN: 9814525006.
  8. Rakhimov R.Kh., Ermakov V.P., Rakhimov M.R. Phonon mechanism of transformation in ceramic materials. Computational Nanotechnology. 2017. No. 4. Pp. 21–35. (In Rus.)
  9. Rakhimov R.Kh., Hasanov R.Z., Yermakov V.P. Comparative frequency characteristics of vibrations generated by the functional ceramics and cavitation generator. Computational Nanotechnology. 2018. No. 4. Pp. 57–70.
  10. Rakhimov R.Kh., Hasanov R.Z., Ermakov V.P. Frequency characteristics of the resonant oscillation generator. Computational Nanotechnology. 2017. No. 4. Pp. 6–13.
  11. Rakhimov R.Kh. Features of the synthesis of functional ceramics with a set of specified properties by the radiation method. Part 8: Fundamentals of the theory of resonance therapy by R. Rakhimov's method (INFRA R Method). Computational Nanotechnology. 2016. No. 4. Pp. 32–135. (In Rus.)
  12. Parpiev O.R., Suleimanov S.Kh., Rakhimov R.Kh. et al. Synthesis of materials on a large solar furnace. Tashkent, 2023. 590 p.
  13. Rakhimov R.Kh., Saidov M.S., Ermakov V.P. Features of the synthesis of functional ceramics with a set of specified properties by the radiation method. Part 5: Mechanism of pulse generation by functional ceramics. Computational Nanotechnology. 2016. No. 2. Pp. 81–93. (In Rus.)
  14. Rakhimov R.Kh. Application of ceramic materials. Dusseldorf: Lambert, 2023. Vol. 1. P. 278; Vol. 2. P. 202; Vol. 3. P. 384; Vol. 4. P. 220.
  15. Rakhimov R.Kh. Possibilities of pulse energy converters as photocatalysts in hydrogen energy. In: Proceedings of the III International Conference “Trends in the Development of Condensed Matter Physics”, Fergana, October 30–31, 2023. Fergana, 2023. Pp. 297–300.
  16. Rakhimov R.Kh., Ermakov V.P. Prospects for solar energy: The role of modern solar technologies in hydrogen production. Computational Nanotechnology. 2023. Vol. 10. No. 3. Pp. 11–25. (In Rus.) doi: 10.33693/2313-223X-2023-10-3-11-25. EDN: NQBORL.
  17. Rakhimov R.Kh., Rashidov H.K., Ernazarov M. Physical methods of impact in the enrichment of man-made and ore raw materials. In: Proceedings of the International Conference “Fundamental and Applied Problems of Modern Physics”. Tashkent, October 19–21, 2023. Tashkent, 2023. Pp. 49–51.
  18. Popov V.S. Tunneling and multiphoton ionization of atoms and ions in a strong laser field (Keldysh theory). Uspekhi Fizicheskikh Nauk. 2004. Vol. 174. No. 9. Pp. 921–955. (In Rus.)
  19. Fedorov M.V. Keldysh's L.V. work “Ionization in the field of a strong electromagnetic wave” and modern physics of the interaction of atoms with a strong laser field. JETP. 2016. Vol. 149. Issue 3. Pp. 522–529. (In Rus.)
  20. Ammosov M.V., Delone N.B., Krainov V.P. Interaction of atoms with intense radiation. Uspekhi Fizicheskikh Nauk. 1986. Vol. 148. No. 6. (In Rus.)
  21. Nikishov A.I., Ritus V.I. Kinetics of multiphoton processes in strong radiation. JETP. 1966. Vol. 50. No. 4. (In Rus.)
  22. Rees H. Calculations of multiphoton ionization of atoms in a strong laser field. Phys. Rev. A. 1980. Vol. 22. No. 5.
  23. Korkum P.B. High harmonics using strong laser fields. Phys. Rev. Lett. 1993. Vol. 71. No. 11.
  24. Meshkov M.D. Models of pulsed tunneling phenomena in the interaction of a strong light field with atoms. JETP. 1999. Vol. 116. No. 4. (In Rus.)
  25. Silaev M., Vvedenskii N. Strong-field approximation beyond the Keldysh theory. Phys. Rev. A. 2014. Vol. 90. No. 6.
  26. Bevz G.P. Physics of atomic-laser interactions. Monograph. 2012.
  27. Quantum tunneling effect. Tutorial. V.V. Ivanov, A.M. Prokhorov (eds.). 2016.
  28. Rakhimov R.Kh., Ermakov V.P., Rakhimov M.R. Phonon mechanism of transformation in ceramic materials. Computational Nanotechnology. 2017. No. 4. Pp. 21–35. (In Rus.)
  29. Rakhimov R.Kh., Ermakov V.P., Rakhimov M.R., Mukhtorov D.N. The potential of polyethylene-ceramic composite in comparison with polyethylene film in real conditions operations. Computational Nanotechnology. 2022. Vol. 9. No. 2. Pp. 67–72. (In Rus.). doi: 10.33693/2313-223X-2022-9-2-67-72
  30. Rakhimov R.Kh., Peter J., Ermakov V.P., Rakhimov M.R. Prospects for the use of polymer-ceramic composite in the production of microalgae. Computational Nanotechnology. 2019. Vol. 6. No. 4. Pp. 44–48. (In Rus.). doi: 10.33693/2313-223X-2019-6-4-44-48
  31. Bell J.S. On the Einstein–Podolsky–Rosen paradox. Physics. 1964. Vol. 1. No. 3. Pp. 195–200.
  32. Leggett A.J., Garg A. Quantum mechanics versus macroscopic realism: Is the flux there when nobody looks? Phys. Rev. Lett. 1985. Vol. 54. P. 857.
  33. Everett H., III. “Relative State” formulation of quantum mechanics. Reviews of Modern Physics. 1957. No. 29. P. 454.
  34. Menskii M.B. Advances in physical sciences. Reviews of actual problems. Quantum mechanics: New experiments, new applications, and new formulations of old questions. Uspekhi Fizicheskikh Nauk. 2000. Vol. 170. No. 6. (In Rus.)
  35. Xiaodong Chen. A new interpretation of quantum theory. Time as hidden variable. Salt Lake City: University of Utah, 2000.
  36. Schrödinger E. Mind and matter. Moscow; Izhevsk: RHD, 2000. Pp. 59–60.

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1.

下载 (5KB)
3. Fig. 2.

下载 (3KB)
4. Fig. 3.

下载 (4KB)
5. Fig. 2. Generation of hydrogen using light energy

下载 (19KB)
6. Fig. 3. Change in temperature in the chamber depending on the operating time of the photocatalyst

下载 (17KB)
7. Fig. 1. Spectrum of solar radiation

下载 (157KB)
8. Fig. 4. Dynamics of the operation of a photocatalyst for the synthesis of hydrogen from water vapor using light energy

下载 (42KB)
9. Fig. 4.

下载 (11KB)