Neuropsychiatric disorders of non-alcoholic fatty liver disease


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Non-alcoholic fatty liver disease (NAFLD) is characterized by an ever-growing prevalence, high progression rates, and a wide spectrum of complications and comorbidities. Despite their high incidence and significant impact on the patients' quality of life, mental and neurological disorders associated with NAFLD, especially its precirrhotic stages, remain relatively poorly explored. This work provides a review of pathogenetic features and main types of central and peripheral nervous system disorders accompanying different stages of NAFLD.

Full Text

Restricted Access

About the authors

Veronika A. Prikhodko

Saint Petersburg State Chemical and Pharmaceutical University of the Ministry of Healthcare of Russia; N.P. Bekhtereva Institute of the Human Brain of the Russian Academy of Sciences

Email: veronika.prihodko@pharminnotech.com
assistant at the Department of pharmacology and clinical pharmacology; junior researcher at the Laboratory of targeted intracerebral drug delivery 197022, Saint Petersburg, 4 Professora Popova Str

Sergei V. Okovity

Saint Petersburg State Chemical and Pharmaceutical University of the Ministry of Healthcare of Russia; N.P. Bekhtereva Institute of the Human Brain of the Russian Academy of Sciences

Email: sergey.okovity@pharminnotech.com
Dr. med. habil., professor, head of the Department of pharmacology and clinical pharmacology; head of the Laboratory of targeted intracerebral drug delivery 197022, Saint Petersburg, 4 Professora Popova Str

References

  1. Лазебник Л.Б., Голованова Е.В., Туркина С.В. с соавт. Неалкогольная жировая болезнь печени у взрослых: клиника, диагностика, лечение. Рекомендации для терапевтов, третья версия. Экспериментальная и клиническая гастроэнтерология. 2021; 1: 4-52. https://dx.doi.org/10.31146/1682-8658-ecg-185-1-4-52. EDN: KJLOJV.
  2. Younossi Z.M., Henry L. Epidemiology of non-alcoholic fatty liver disease and hepatocellular carcinoma. JHEP Rep. 2021;3(4): 100305. https://dx.doi.org/10.1016/j.jhepr.2021.100305.
  3. Eslam M., Sanyal A.J., George J. et al. MAFLD: A consensus-driven proposed nomenclature for metabolic associated fatty liver disease. Gastroenterology. 2020; 158(7): 1999-2014.e1. https://dx.doi.org/10.1053/j.gastro.2019.11.312.
  4. Mikkelsen A.C.D., Kjergaard K., Mookerjee R.P. et al. Non-alcoholic fatty liver disease: Also a disease of the brain? A systematic review of the preclinical evidence. Neurochem Res. 2022. https://dx.doi.org/10.1007/s11064-022-03551-x. Online ahead of print.
  5. Moretti R., Caruso P., Gazzin S. Non-alcoholic fatty liver disease and neurological defects. Ann Hepatol. 2019; 18(4): 563-70. https://dx.doi.org/10.1016/j.aohep.2019.04.007.
  6. Lombardi R., Fargion S., Fracanzani A.L. Brain involvement in non-alcoholic fatty liver disease (NAFLD): A systematic review. Dig Liver Dis. 2019; 51(9): 1214-22. https://dx.doi.org/10.1016/j.dld.2019.05.015.
  7. Лазебник Л.Б., Голованова Е.В., Алексеенко С.А. с соавт. Российский консенсус «Гипераммониемии у взрослых». Экспериментальная и клиническая гастроэнтерология. 2019; 12: 4-23. https://dx.doi.org/10.31146/1682-8658-ecg-172-12-4-23. EDN: CBRGXX.
  8. Berg J.M., Tymoczko J.L., Stryer L. Biochemistry. 5th edition. NY: W.H. Freeman. 2002; 1100 pp. ISBN-10: 0716746840; ISBN-13: 9780716746843.
  9. Sepehrinezhad A., Zarifkar A., Namvar G. et al. Astrocyte swelling in hepatic encephalopathy: Molecular perspective of cytotoxic edema. Metab Brain Dis. 2020; 35(4): 559-78. https://dx.doi.org/10.1007/s11011-020-00549-8.
  10. Rose J., Brian C., Pappa A. et al. Mitochondrial metabolism in astrocytes regulates brain bioenergetics, neurotransmission and redox balance. Front Neurosci. 2020; 14: 536682. https://dx.doi.org/10.3389/fnins.2020.536682.
  11. Soria L.R., Brunetti-Pierri N. Targeting autophagy for therapy of hyperammonemia. Autophagy. 2018; 14(7): 1273-75. https://dx.doi.org/10.1080/15548627.2018.1444312.
  12. Quinn W.J.III, Wan M., Shewale S.V et al. mTORC1 stimulates phosphatidylcholine synthesis to promote triglyceride secretion. J Clin Invest. 2017; 127(11): 4207-15. https://dx.doi.org/10.1172/JCI96036.
  13. Selen E.S., Wolfgang M.J. mTORC1 activation is not sufficient to suppress hepatic PPAR a signaling or ketogenesis. J Biol Chem. 2021; 297(1): 100884. https://dx.doi.org/10.1016/j.jbc.2021.100884.
  14. Blanchard P.-G., Festuccia W.T., Houde V.P. et al. Major involvement of mTOR in the PPARy -induced stimulation of adipose tissue lipid uptake and fat accretion. 2012;53:1117-25. https://dx.doi.org/10.1194/jlr.M021485.
  15. Dadsetan S., Kukolj E., Bak L.K. et al. Brain alanine formation as an ammonia-scavenging pathway during hyperammonemia: Effects of glutamine synthetase inhibition in rats and astrocyte-neuron co-cultures. J Cereb Blood Flow Metab. 2013; 33(8): 1235-41. https://dx.doi.org/10.1038/jcbfm.2013.73.
  16. Bosoi C.R., Rose C.F. Elevated cerebral lactate: Implications in the pathogenesis of hepatic encephalopathy. Metab Brain Dis. 2014; 29(4): 919-25. https://dx.doi.org/10.1007/s11011-014-9573-9.
  17. Oria M., Jalan R. Brain lactate in hepatic encephalopathy: Friend or foe? J Hepatol. 2014; 60(3): 476-77. https://dx.doi.org/10.1016/j.jhep.2013.11.029.
  18. Sorensen M., Walls A.B., Dam G. et al. Low cerebral energy metabolism in hepatic encephalopathy reflects low neuronal energy demand. Role of ammonia-induced increased GABAergic tone. Anal Biochem. 2022; 114766. https://dx.doi.org/10.1016/j.ab.2022.114766. Online ahead of print.
  19. Rama Rao K.V., Norenberg M.D. Brain energy metabolism and mitochondrial dysfunction in acute and chronic hepatic encephalopathy. Neurochem Int. 2012; 60(7): 697-706. https://dx.doi.org/10.1016/j.neuint.2011.09.007.
  20. Albrecht J., Zielinska M., Norenberg M.D. Glutamine as a mediator of ammonia neurotoxicity: A critical appraisal. Biochem Pharmacol. 2010; 80(9): 1303-8. https://dx.doi.org/10.1016/j.bcp.2010.07.024.
  21. Zielinska M., Popek M., Albrecht A. Roles of changes in active glutamine transport in brain edema development during hepatic encephalopathy: An emerging concept. Neurochem Res. 2014; 39(3): 599-604. https://dx.doi.org/10.1007/s11064-013-1141-x.
  22. Holecek M. Evidence of a vicious cycle in glutamine synthesis and breakdown in pathogenesis of hepatic encephalopathy-therapeutic perspectives. Metab Brain Dis. 2014; 29(1): 9-17. https://dx.doi.org/10.1007/s11011-013-9428-9.
  23. Traube F.R., Ozdemir D., Sahin H. et al. Redirected nuclear glutamate dehydrogenase supplies Tet3 with a-ketoglutarate in neurons. Nat Commun. 2021; 12(1): 4100. https://dx.doi.org/10.1038/s41467-021-24353-9.
  24. Oja S.S., Saransaari P., Korpi E.R. Neurotoxicity of ammonia. Neurochem Res. 2017; 42(3): 713-20. https://dx.doi.org/10.1007/s11064-016-2014-x.
  25. Limon I.D., Angelo-Cruz I.A., Sanchez-Abdon L., Patricio-Martinez A. Disturbance of the glutamate-glutamine cycle, secondary to hepatic damage, compromises memory function. Front Neurosci. 2021; 15: 578922. https://dx.doi.org/10.3389/fnins.2021.578922.
  26. Baraldi M., Avallone R., Corsi L. et al. Natural endogenous ligands for benzodiazepine receptors in hepatic encephalopathy. Metab Brain Dis. 2009; 24(1): 81-93. https://dx.doi.org/10.1007/s11011-008-9111-8.
  27. Подымова С.Д., Винницкая Е.В., Хайменова Т.Ю. Печеночная энцефалопатия: современные аспекты диагностики и лечения. Экспериментальная и клиническая гастроэнтерология. 2021; 7: 90-98. https://dx.doi.org/10.31146/1682-8658-ecg-191-7-90-98. EDN: KBRHKR.
  28. Gorg B., Foster N., Reinehr R. et al. Benzodiazepine-induced protein tyrosine nitration in rat astrocytes. Hepatology. 2003; 37(2): 334-42. https://dx.doi.org/10.1053/jhep.2003.50061.
  29. Mladenovic D., Stanojlovic O., Radosavljevic T. The role of neurosteroids in the pathogenesis of hepatic encephalopathy. Medicinski Podmladak. 2016; 67(1): 35-40. https://dx.doi.org/10.5937/medpodm1601035M.
  30. Izumi Y., Svrakic N., O'Dell K., Zorumski C.F. Ammonia inhibits long-term potentiation via neurosteroid synthesis in hippocampal pyramidal neurons. Neuroscience. 2013; 233: 166-73. https://dx.doi.org/10.1016/j.neuroscience.2012.12.035.
  31. Kumashiro N., Erion D.M., Zhang D. et al. Cellular mechanism of insulin resistance in nonalcoholic fatty liver disease. Proc Natl Acad Sci U S A. 2011; 108(39): 16381-5. https://dx.doi.org/10.1073/pnas.1113359108.
  32. Doust Y.V, Ziebell J.M. Insulin resistance in the brain: Evidence supporting a role for inflammation, reactive microglia, and the impact of biological sex. Neuroendocrinology. 2022. https://dx.doi.org/10.1159/000524059. Online ahead of print.
  33. Ding S., Zhuge W., Yang J. et al. Insulin resistance disrupts the interaction between AKT and the NMDA receptor and the inactivation of the CaMK/CREB pathway in minimal hepatic encephalopathy. Toxicol Sci. 2017; 159(2): 290-306. https://dx.doi.org/10.1093/toxsci/kfx093.
  34. Kleinridders A., Cai W., Cappellucci L. et al. Insulin resistance in brain alters dopamine turnover and causes behavioral disorders. Proc Natl Acad Sci U S A. 2015; 112(11): 3463-68. https://dx.doi.org/10.1073/pnas.1500877112.
  35. Higarza S.G., Arboleya S., Gueimonde M. et al. Neurobehavioral dysfunction in nonalcoholic steatohepatitis is associated with hyperammonemia, gut dysbiosis, and metabolic and functional brain regional deficits. PLOS One. 2019; 14(9): e0223019. https://dx.doi.org/10.1371/journal.pone.0223019.
  36. Ferro D., Baratta F., Pastori D. et al. New Insights into the pathogenesis of non-alcoholic and oxidative stress. Nutrients. 2020; 12(9): 2762. https://dx.doi.org/10.3390/nu12092762.
  37. Vilstrup H., Amodio P., Bajaj J. et al. Hepatic encephalopathy in chronic liver disease: 2014 practice guideline by the American Association for the Study of Liver Diseases and the European Association for the Study of the Liver. Hepatology. 2014; 60(2): 715-35. https://dx.doi.org/10.1002/hep.27210.
  38. Лопаткина Т.Н., Байкова Т.А. Минимальная печеночная энцефалопатия при циррозе печени и раннее назначение Дюфалака. Фарматека. 2012; 2: 66-70. EDN: OVXTTD.
  39. Casadaban L.C., Parvinian A., Minocha J. et al. Clearing the confusion over hepatic encephalopathy after TIPS creation: Incidence, Prognostic factors, and clinical outcomes. Dig Dis Sci. 2015; 60(4): 1059-66. https://dx.doi.org/10.1007/s10620-014-3391-0.
  40. Schindler P., Heinzow H., Trebicka J., Wildgruber M. Shunt-induced hepatic encephalopathy in TIPS: Current approaches and clinical challenges. J Clin Med. 2020; 9(11): 3784. https://dx.doi.org/10.3390/jcm9113784.
  41. Назыров Ф.Г, Девятов А.В., Бабаджанов А.Х., Раимов С.А. Дистальный спленоренальный анастомоз у больных разных возрастных групп. Анналы хирургической гепатологии. 2015; 20(1): 24-28. https://dx.doi.org/10.16931/1995-5464.2015124-28. EDN: TQKMWF.
  42. Павлов Ч.С., Дамулин И.В., Ивашкин В.Т. Печеночная энцефалопатия: патогенез, клиника, диагностика, терапия. Российский журнал гастроэнтерологии, гепатологии, колопроктологии. 2016; 26(1): 44-53.EDN: YIYGCZ.
  43. Burgos A., Bermejo P.E., Calleja J.L. et al. Acquired chronic hepatocerebral degeneration due to cirrhosis from non-alcoholic steatohepatitis. Rev Esp Enferm Dig. 2009; 101(11): 806-11. https://dx.doi.org/10.4321/s1130-01082009001100009.
  44. Полещук В.В., Яковенко Е.В., Федотова Е.Ю., Иллариошкин С.Н. Приобретенная невильсоновская гепатоцеребральная дегенерация. Нервные болезни. 2019; 1: 34-39. https://dx.doi.org/10.24411/2071-5315-2018-12077. EDN: UEUPYC.
  45. Balzano T., Forteza J., Borreda I. et al. Histological features of cerebellar neuropathology in patients with alcoholic and nonalcoholic steatohepatitis. J Neuropathol Exp Neurol. 2018; 77(9): 837-45. https://dx.doi.org/10.1093/jnen/nly061.
  46. Balzano T., Forteza J., Molina P. et al. The cerebellum of patients with steatohepatitis shows lymphocyte infiltration, microglial activation and loss of purkinje and granular neurons. Sci Rep. 2018; 8(1): 3004. https://dx.doi.org/10.1038/s41598-018-21399-6.
  47. Farmer B.C., Walsh A.E., Kluemper J.C. et al. Lipid droplets in neurodegenerative disorders. Front Neurosci. 2020; 14: 742. https://dx.doi.org/10.3389/fnins.2020.00742.
  48. Felipo V., Urios A., Gimenez-Garzo C. et al. Non invasive blood flow measurement in cerebellum detects minimal hepatic encephalopathy earlier than psychometric tests. World J Gastroenterol. 2014; 20(33): 11815-25. https://dx.doi.org/10.3748/wjg.v20.i33.11815.
  49. Cheon S.Y., Song J. Novel insights into non-alcoholic fatty liver disease and dementia: insulin resistance, hyperammonemia, gut dysbiosis, vascular impairment, and inflammation. Cell Biosci. 2022; 12(1): 99. https://dx.doi.org/10.1186/s13578-022-00836-0.
  50. Agarwal A.N., Mais D.D. Sensitivity and specificity of Alzheimer type ii astrocytes in hepatic encephalopathy. Arch Pathol Lab Med. 2019; 143(10): 1256-58. https://dx.doi.org/10.5858/arpa.2018-0455-OA.
  51. Donath H., Woelke S., Theis M. et al. Progressive liver disease in patients with ataxia telangiectasia. Front Pediatr. 2019; 7: 458. https://dx.doi.org/10.3389/fped.2019.00458.
  52. Viswanathan P., Sharma Y., Maisuradze L. et al. Ataxia telangiectasia mutated pathway disruption affects hepatic DNA and tissue damage in nonalcoholic fatty liver disease. Exp Mol Pathol. 2021; 113: 104369. https://dx.doi.org/10.1016/j.yexmp.2020.104369.
  53. Pizzamiglio L., Focchi E., Antonucci F. ATM protein kinase: Old and new implications in neuronal pathways and brain circuitry. Cells. 2020; 9(9): 1969. https://dx.doi.org/10.3390/cells9091969.
  54. Daugherity E.K., Balmus G., Al Saei A. et al. The DNA damage checkpoint protein ATM promotes hepatocellular apoptosis and fibrosis in a mouse model of non-alcoholic fatty liver disease. Cell Cycle. 2012; 11(10): 1918-28. https://dx.doi.org/10.4161/cc.20259.
  55. Estrada L.D., Ahumada P., Cabrera D., Arab J.P. Liver dysfunction as a novel player in Alzheimer's progression: Looking outside the brain. Front Aging Neurosci. 2019; 11: 174. https://dx.doi.org/10.3389/fnagi.2019.00174.
  56. Kim D.-G., Krenz A., Toussaint L.E. et al. Non-alcoholic fatty liver disease induces signs of Alzheimer's disease (AD) in wildtype mice and accelerates pathological signs of AD in an AD model. J Neuroinflammation. 2016; 13: 1. https://dx.doi.org/10.1186/s12974-015-0467-5.
  57. Karbalaei R., Allahyari M., Rezaei-Tavirani M. et al. Protein-protein interaction analysis of Alzheimer's disease and NAFLD based on systems biology methods unhide common ancestor pathways. Gastroenter Hepatol Bed Bench. 2018; 11(1): 27-33.
  58. Petta S., Tuttolomondo A., Gagliardo C. et al. The presence of white matter lesions is associated with the fibrosis severity of nonalcoholic fatty liver disease. Medicine (Baltimore). 2016; 95(16): e3446. https://dx.doi.org/10.1097/MD.0000000000003446.
  59. Moghekar A., Kraut M., Elkins W. et al. Cerebral white matter disease is associated with Alzheimer pathology in a prospective cohort. Alzheimers Dement. 2012; 8(5 Suppl): S71-77. https://dx.doi.org/10.1016/j.jalz.2012.04.006.
  60. Shang Y., Nasr P., Ekstedt M. et al. Non-alcoholic fatty liver disease does not increase dementia risk although histology data might improve risk prediction. JHEP Rep. 2020; 3(2): 100218. https://dx.doi.org/10.1016/j.jhepr.2020.100218.
  61. Parikh N., Kamel H., Zhang C. et al. Association between liver fibrosis and incident dementia in the UK Biobank study. European 75 Journal of Neurology. Eur J Neurol. 2022; 29(9): 2622-30. https://dx.doi.org/10.1111/ene.15437.
  62. Jeong S.M., Rim H.R., Jang W. et al. Sex differences in the association between nonalcoholic fatty liver disease and Parkinson's disease. Parkinsonism Relat Disord. 2021; 93: 19-26. https://dx.doi.org/10.1016/j.parkreldis.2021.10.030.
  63. Nodera H., Takamatsu N., Muguruma N. et al. Frequent hepatic steatosis in amyotrophic lateral sclerosis: Implication for systemic involvement. Neurol Clin Neurosci. 2015; 3: 58-62. https://dx.doi.org/10.1111/ncn3.143.
  64. Parekh B. A(a)LS: Ammonia-induced amyotrophic lateral sclerosis. F1000Research. 2015; 4: 119. https://dx.doi.org/10.12688/f1000research.6364.1.
  65. Al-hamoudi W., Alsadoon A., Hassanian M. et al. Endothelial dysfunction in nonalcoholic steatohepatitis with low cardiac disease risk. Sci Rep. 2020; 10(1): 8825. https://dx.doi.org/10.1038/s41598-020-65835-y.
  66. Минов А.Ф., Дзядзько А.М., Руммо О.О. Нарушения гемостаза при заболеваниях печени. Вестник трансплантологии и искусственных органов. 2010; 12(2): 82-91. EDN: LGTOTB.
  67. Virovic-Jukic L., Stojsavljevic-Shapeski S., Forgac J. et al. Non-alcoholic fatty liver disease - a procoagulant condition? Croat Med J. 2021; 62(1): 25-33. https://dx.doi.org/10.3325/cmj.2021.62.25.
  68. Mucino-Bermejo J., Carrillo-Esper R., Uribe M., Mendez-Sanchez N. Coagulation abnormalities in the cirrhotic patient. Annals of Hepatology. 2013; 12(5): 713-24.
  69. Kim Y.D., Song D., Heo J.H. et al. Relationship between cerebral microbleeds and liver stiffness determined by transient elastography. PLOS One. 2015; 10(9): e0139227. https://dx.doi.org/10.1371/journal.pone.0139227.
  70. Hu J., Xu Y., He Z. et al. Increased risk of cerebrovascular accident related to non-alcoholic fatty liver disease: A meta-analysis. Oncotarget. 2018; 9(2): 2752-60. https://dx.doi.org/10.18632/oncotarget.22755.
  71. Kwak M.S., Kim K.W., Seo H. et al. Non-obese fatty liver disease is associated with lacunar infarct. Liver Int. 2018; 38(7): 1292-99. https://dx.doi.org/10.1111/liv.13663.
  72. Alkagiet S., Papagiannis A., Tziomalos K. Associations between nonalcoholic fatty liver disease and ischemic stroke. World J Hepatol. 2018; 10(7): 474-78. https://dx.doi.org/10.4254/wjh.v10.i7.474.
  73. Xu J., Dai L., Zhang Y. et al. Severity of nonalcoholic fatty liver disease and risk of future ischemic stroke events. Stroke. 2021; 52(1):103-10. https://dx.doi.org/10.1161/STROKEAHA.120.030433.
  74. Yuan C.X., Ruan Y.T., Zeng Y.Y. et al. Liver fibrosis is associated with hemorrhagic transformation in patients with acute ischemic stroke. Front Neurol. 2020; 11: 867. https://dx.doi.org/10.3389/fneur.2020.00867.
  75. American Psychiatric Association. Diagnostic and statistical manual of mental disorders. 5th edition. Arlington, VA: American Psychiatric Publishing. 2013; 991 pp. https://dx.doi.org/10.1176/appi.books.9780890425787. ISBN-10: 0890425558; ISBN-13: 978-0890425558.
  76. Youssef N.A., Abdelmalek M.F., Binks M. et al. Associations of depression, anxiety and antidepressants with histological severity of nonalcoholic fatty liver disease. Liver Int. 2013; 33(7): 1062-70. https://dx.doi.org/10.1111/liv.12165.
  77. Jung J.Y., Park S.K., Oh C.M. et al. Non-alcoholic fatty liver disease and its association with depression in Korean general population. J Korean Med Sci. 2019; 34(30): e199. https://dx.doi.org/10.3346/jkms.2019.34.e199.
  78. Choi J.M., Chung G.E., Kang S.J. et al. Association between anxiety and depression and nonalcoholic fatty liver disease. Front Med (Lausanne). 2021; 7: 585618. https://dx.doi.org/10.3389/fmed.2020.585618.
  79. Xiao J., Lim L.K.E., Ng C.H. et al. Is fatty liver associated with depression? A meta-analysis and systematic review on the prevalence, risk factors, and outcomes of depression and non-alcoholic fatty liver disease. Front Med (Lausanne). 2021; 8: 691696. https://dx.doi.org/10.3389/fmed.2021.691696.
  80. Elwing J.E., Lustman P.J., Wang H.L., Clouse R.E. Depression, anxiety, and nonalcoholic steatohepatitis. Psychosom Med. 2006; 68(4): 563-69. https://dx.doi.org/10.1097/01.psy.0000221276.17823.df.
  81. Tomeno W., Kawashima K., Yoneda M. et al. Non-alcoholic fatty liver disease comorbid with major depressive disorder: The pathological features and poor therapeutic efficacy. J Gastroenterol Hepatol. 2015; 30(6): 1009-14. https://dx.doi.org/10.1111/jgh.12897.
  82. Radfor-Smith D.E., Patel P.J., Irvine K.M. et al. Depressive symptoms in non-alcoholic fatty liver disease are identified by perturbed lipid and lipoprotein metabolism. PLOS One. 2022; 17(1): e0261555. https://dx.doi.org/10.1371/journal.pone.0261555.
  83. Asquith E., Bould K., Catling J., Day E. Behaviour regulation , locus of control and the role of mental health in non-alcoholic fatty liver disease. Res Sq. 2022; https://dx.doi.org/10.21203/rs.3.rs-1365493/v1. Preprint.
  84. Shea S., Lionis C., Kite C. et al. Non-alcoholic fatty liver disease (NAFLD) and potential links to depression, anxiety, and chronic stress. Biomedicines. 2021; 9(11): 1697. https://dx.doi.org/10.3390/biomedicines9111697.
  85. Newton J.L. Systemic symptoms in non-alcoholic fatty liver disease. Dig Dis. 2010; 28(1): 214-19. https://dx.doi.org/10.1159/000282089.
  86. Colognesi M., Gabbia D., De Martin S. Depression and cognitive impairment-Extrahepatic manifestations of NAFLD and NASH. Biomedicines. 2020; 8(7): 229. https://dx.doi.org/10.3390/biomedicines8070229.
  87. Prikhodko V.A., Sysoev Y.I., Poveryaeva M.A. et al. Effects of empagliflozin and L-ornithine L-aspartate on behavior, cognitive functions, and physical performance in mice with experimentally induced steatohepatitis. Bulletin of Russian State Medical University. 2020; 3: 49-57. https://dx.doi.org/10.24075/brsmu.2020.034. EDN: FLGJWF.
  88. An K., Starkweather A., Sturgill J. et al. Association of CTRP13 with liver enzymes and cognitive symptoms in nonalcoholic fatty liver disease. Nurs Res. 2019; 68(1): 29-38. https://dx.doi.org/10.1097/NNR.0000000000000319.
  89. Celikbilek A., Celikbilek M., Bozkurt G. Cognitive assessment of patients with nonalcoholic fatty liver disease. Eur J Gastroenterol Hepatol. 2018; 30(8): 944-50. https://dx.doi.org/10.1097/MEG.0000000000001131.
  90. Felipo V., Urios A., Montesinos E. et al. Contribution of hyperammonemia and inflammatory factors to cognitive impairment in minimal hepatic encephalopathy. Metab Brain Dis. 2012; 27(1): 51-58. https://dx.doi.org/10.1007/s11011-011-9269-3.
  91. Tarter R.E., Hegedus A.M., van Thiel D.H. et al. Nonalcoholic cirrhosis associated with neuropsychological dysfunction in the absence of overt evidence of hepatic encephalopathy. Gastroenterology. 1984; 86(6): 1421-27. https://dx.doi.org/10.1016/S0016-5085(84)80154-7.
  92. Elliott C., Frith J., Day C.P. et al. Functional impairment in alcoholic liver disease and non-alcoholic fatty liver disease is significant and persists over 3 years of follow-up. Dig Dis Sci. 2013; 58(8): 2383-91. https://dx.doi.org/10.1007/s10620-013-2657-2.
  93. Swain M.G., Jones D.E.J. Fatigue in chronic liver disease: New insights and therapeutic approaches. Liver Int. 2019; 39(1): 6-19. https://dx.doi.org/10.1111/liv.13919.
  94. Райхельсон К.Л., Кондрашина Э.А. Адеметионин в лечении повышенной утомляемости/слабости при заболеваниях печени: систематический обзор. Терапевтический архив. 2019; 91(2): 134-142. https://dx.doi.org/10.26442/00403660.2019.02.000130. EDN: PPZPEZ.
  95. Оганезова И.А. Астения как системное проявление хронических заболеваний печени: основы патофизиологии и возможности терапии. Фарматека. 2018; 9: 73-79. https://dx.doi.org/10.18565/pharmateca.2018.973-78. EDN: WGNBTE.
  96. Newton J.L., Jones D.E.J., Henderson E. et al. Fatigue in non-alcoholic fatty liver disease is severe and associates with inactivity and excessive daytime sleepiness but not with liver disease severity or insulin resistance. Gut. 2008; 57(6): 807-13. https://dx.doi.org/10.1136/gut.2007.139303.
  97. Hickman I.J., Jonsson J.R., Prins J.B. et al. Modest weight loss and physical activity in over-weight patients with chronic liver disease results in sustained improvements in alanine aminotransferase, fasting insulin, and quality of life. Gut. 2004; 53(3): 413-19. https://dx.doi.org/10.1136/gut.2003.027581.
  98. D'Mello C., Swain M.G. Liver-brain interactions in inflammatory liver diseases: Implications for fatigue and mood disorders. Brain Behav Immun. 2014; 35: 9-20. https://dx.doi.org/10.1016/j.bbi.2013.10.009.
  99. Li W., Kadler B.K., Brindley J.H. et al. The contribution of daytime sleepiness to impaired quality of life in NAFLD in an ethnically diverse population. Sci Rep. 2022; 12(1): 5123. https://dx.doi.org/10.1038/s41598-022-08358-y.
  100. Mir H.M., Stepanova M., Afendy H. et al. Association of sleep disorders with nonalcoholic fatty liver disease (NAFLD): A population-based study. J Clin Exp Hepatol. 2013; 3(3): 181-85. https://dx.doi.org/10.1016/j.jceh.2013.06.004.
  101. Chung G.E., Cho E.J., Yoo J.J. et al. Nonalcoholic fatty liver disease is associated with the development of obstructive sleep apnea. Sci Rep. 2021; 11(1): 13743. https://dx.doi.org/10.1038/s41598-021-92703-0.
  102. Plotogea O.-M., Diaconu C.C., Gheorghe G. et al. The prevalence and association of cognitive impairment with sleep disturbances in patients with chronic liver disease. Brain Sci. 2022; 12(4): 444. https://dx.doi.org/10.3390/brainsci12040444.
  103. Williams K.H., Burns K., Constantino M. et al. An association of large-fibre peripheral nerve dysfunction with non-invasive measures of liver fibrosis secondary to non-alcoholic fatty liver disease in diabetes. J Diabetes Complications. 2015; 29(8): 1240-47. https://dx.doi.org/10.1016/j.jdiacomp.2015.06.015.
  104. Gonzalez A., Huerta-Salgado C., Orozco-Aguilar J. et al. Role of oxidative stress in hepatic and extrahepatic dysfunctions during nonalcoholic fatty liver disease (NAFLD). Oxid Med Cell Longev. 2020; 2020: 1617805. https://dx.doi.org/10.1155/2020/1617805.
  105. Bonhof G.J., Herder C., Strom A. et al. Emerging biomarkers, tools, and treatments for diabetic polyneuropathy. Endocr Rev. 2019; 40(1):153-92. https://dx.doi.org/10.1210/er.2018-00107.
  106. Thrainsdottir S., Malik R.A., Dahlin L.B. et al. Endoneurial capillary abnormalities presage deterioration of glucose tolerance and accompany peripheral neuropathy in man. Diabetes. 2003; 52(10): 2615-22. https://dx.doi.org/10.2337/diabetes.52.10.2615.
  107. Toyoda H., Kumada T., Kiriyama S. et al. Higher hepatic gene expression and serum levels of matrix metalloproteinase-2 are associated with steatohepatitis in non-alcoholic fatty liver diseases. Biomarkers. 2013; 18(1): 82-87. https://dx.doi.org/10.3109/1354750X.2012.738249.
  108. Trojanek J.B., Michalkiewicz J., Grzywa-Czuba R. et al. Expression of matrix metalloproteinases and their tissue inhibitors in peripheral blood leukocytes and plasma of children with nonalcoholic fatty liver disease. Mediators Inflamm. 2020; 2020: 8327945. https://dx.doi.org/10.1155/2020/8327945.
  109. Liu K., Yang L., Wang G. et al. Metabolic stress drives sympathetic neuropathy within the liver. Cell Metab. 2021; 33(3): 666-75.e4. https://dx.doi.org/10.1016/j.cmet.2021.01.012.
  110. Loring H.S., Thompson P.R. Emergence of SARM1 as a potential therapeutic target for Wallerian-type diseases. Cell Chem Biol. 2020; 27(1): 1-13. https://dx.doi.org/10.1016/j.chembiol.2019.11.002.
  111. Chaudhry V., Corse A.M., O'Brian R. et al. Autonomic and peripheral (sensorimotor) neuropathy in chronic liver disease: A clinical and electrophysiologic study. Hepatology. 1999; 29(6): 1698-703. https://dx.doi.org/10.1002/hep.510290630.
  112. Jain J., Singh R., Banait S. et al. Magnitude of peripheral neuropathy in cirrhosis of liver patients from central rural India. Ann Indian Acad Neurol. 2014; 17(4): 409-15. https://dx.doi.org/10.4103/0972-2327.144012.
  113. Kharbanda P.S., Prabhakar S., Chawla Y.K. et al. Peripheral neuropathy in liver cirrhosis. J Gastroenterol Hepatol. 2003; 18(8): 922-26. https://dx.doi.org/10.1046/j.1440-1746.2003.03023.x.
  114. Sun W., Zhang D., Sun J. et al. Association between non-alcoholic fatty liver disease and autonomic dysfunction in a Chinese population. QJM. 2015; 108(8): 617-24. https://dx.doi.org/10.1093/qjmed/hcv006.

Supplementary files

Supplementary Files
Action
1. JATS XML

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies