Metabolic therapy in chronic heart failure


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

The modern conceptions of the role of free fatty acids (FFA) and glycolysis in the energy metabolism of the myocardium are considered. Experimental models of myocardial ischemia have shown that some medicines are capable of altering the metabolism in cardiomyocytes, transferring it from FFA oxidation to more efficient process - the oxidation of glucose and lactate. In coronary artery disease, cardiomyocyte metabolism may vary depending on the stage of chronic heart failure (CHF). Some changes are compensatory in nature, thereby they partially improve the impaired metabolism, while others may further depress processes of energy formation in the myocardium. Drugs that have the ability to influence metabolic processes in myocardium include cytoprotectors, antioxidants and antihypoxants. Trimetazidine and ranolazine fall into the first group; ubiquinone refers to the second group. Cytochrome C deserves special attention among antihypoxants. Results of clinical studies carried out in the cardiological practice have shown that this drug has a good clinical effect in patients with cardiovascular diseases, including CHF, significantly improves myocardial function in hypoxic conditions and allows optimizing the treatment of patients. Given the «universality» of the action of Cytochrome C and its safety, this drug can be used also in other diseases accompanied by hypoxia (diabetes mellitus, compromised liver function and cerebral circulation disorders).

Full Text

Restricted Access

About the authors

Viktor Vladimirovich Cheltsov

Medical Center of Affairs of the Moscow Mayor and Moscow Government

Email: vcheltsov@mail.ru
MD, professor

Anatoliy Ivanovich Martynov

A.I. Yevdokimov Moscow State Medical and Dental University

Email: mailbox@rnmot.ru
academician of Russian Academy of Sciences, MD, professor of Department of Hospital Therapy № 1, Medical Faculty

Yuliya Shamilevna Gushchina

Russian Peoples' Friendship University

Email: gushchina@mail.ru
PhD, Associate Professor, Department of General and Clinical Pharmacology, Medical Faculty

Tatiana Semenovna Illarionova

Russian Peoples' Friendship University

Email: illarionova@med.rudn.ru
PhD, Associate Professor, Department of General and Clinical Pharmacology, Medical Faculty

Elina Arkadevna Korovyakova

Russian Peoples' Friendship University

Email: elinakor@mail.ru
PhD, Associate Professor, Department of General and Clinical Pharmacology, Medical Faculty

References

  1. Marzilli M. Metabolic profile in heart disease. Heart Metab. 2006;32:3-4.
  2. Lopaschuk G.D. 1994, цит. по Ussher J.R., Lopaschuk G.D. Clinical implications of energetic problems in cardiovascular disease. Heart Metab. 2006;32:9-17.
  3. Rosamond W., Flegal K., Furie K., Go A., Greenlund K., Haase N. et al. Heart disease and stroke statistics, 2008 update: a report from American Heart Association Statistics Committee and Stroke Statistics Subcommittee. Circulation. 2008;1 17:25-146.
  4. Roger V.L., Weston S.A., Redfield M.M., Hellermann-Homan J.P., Killian J., Yawn B.P., Jacobsen S.J. Trends in heart failure incidence and survival in a community-based population. JAMA. 2004;292:344-50.
  5. Lopaschuk G.D., Belke D.D., Gamble J., Itoi T., Schönekess B.O. Regulation of fatty acid oxidation in the mammalian heart in health and disease. Biochim. Biophys. Acta. 1994;1213:263-76.
  6. van der Vusse G.J., van Bilsen M., Glatz J.F. Cardiac fatty acid uptake and transport in health and disease. Cardiovasc. Res. 2000;45,279-93.
  7. Schultz H. Regulation of fatty acid oxidation in heart. J. Nutr. 1994;124:165-71.
  8. Young L.H., Renfu Y., Russel R., Hu X., Caplan M., Ren J., Shulman G.I., Sinusas A.J. Low-flow ischemia leads to translocation of canine heart GLUT-4 and GLUT-1 glucose transporters to the sarcolemma in vivo. Circulation. 1997;95:415-22.
  9. Neely J.R., Morgan H.E. Relationship between carbohydrate and lipid metabolism and the energy balance of heart muscle. Annu. Rev. Physiol. 1974;36:413-59.
  10. Dennis S.C., Gevers W., Opie L.H. Protons in ischemia: where do they come from; where do they go to? J. Mol. Cell Cardiol. 1991;23:1077-86.
  11. Stanley W.C., Chandler M.P. Energy metabolism in the normal and failing heart: potential for therapeutic intervention. Heart Failure Rev. 2002;7:115-30.
  12. Malmberg K., Norhammar A., Webel H., Ryden L. Glycometabolic state at admission: important risk marker of mortality in conventionally treated patients with diabetes mellitus and acute myocardial infarction. Long-term results from the Diabetes and Insulin-Glucose Infusion in Acute Myocardial Infarction (DIGAMI) study. Circulation. 1999;99:2626-32.
  13. Beanlands R.S.B., Nahmias C., Gordon E., Coates G., deKemp R., Firnau G., Fallen E. The effects of beta 1-blockade on oxidative metabolism and the metabolic cost of ventricular work in patients with left ventricular dysfunction. Circulation. 2000;12:2070-5.
  14. Folmes C.D., Clanachan A.S., Lopaschuk G.D. Fatty acid oxidation inhibitor in the management of chronic complication of atherosclerosis. Curr. Atheroscler. Rep. 2005;7:63-70.
  15. Stanley W.C., Recchia F.A., Lopaschuk G.D. Myocardial substrate metabolism in the normal and failing heart. Physiol. Rev. 2005;85:1093-129.
  16. Bhatia R.S., Tu J.V., Lee D.S., Austin P.C., Fang J., Haouzi A., Gong Y., Liu P.P. Outcome of heart failure with preserved ejection fraction in a population-based study. N. Engl. J. Med. 2006;355(3):260-9.
  17. Jaswal J.S., Ussher J.R. Differentiating diastolic dysfunction from classic heart failure. Heart Metab. 2012;57:4-7.
  18. Ussher J.R., Jaswal J.S. Inhibition of fatty acid oxidation as an approach to treat diastolic heart failure. Heart Metab. 2013;61:20-4.
  19. Gaasch W.H., Zile M.R. Left ventricular structural remodeling in health and disease: with special emphasis on volume, mass and geometry. J. Am. Coll. Cardiol. 2011;58:1733-40.
  20. Wood P., Piran S., Liu P.P. Diastolic heart failure: progress, treatment challenges and prevention. Can. J. Cardiol. 2011;27:302-10.
  21. Clarke B., Wyatt K.M., McCormack J.G. Ranolazine increases active pyruvate dehydrogenase in perfused normoxic rat hearts: evidence for an indirect mechanism. J. Mol. Cell Cardiol. 1996;28:341-50.
  22. Николаева Е.А. Поражение сердца при митохондриальных заболеваниях: основные клинические формы, возможности лечения. Медицинский альманах. 2013;4(28): 129-32. [Nikolaeva Ye.A. Cardiac involvement in mitochondrial diseases: main clinical forms, treatment options. Medical almanac. 2013;4(28):129-32 (in Russian)]
  23. Семенова И.Г., Баллюзек М.Ф., Новиков Ю.А., Тугушева Ф.А. Эффективность терапии больных хронической сердечной недостаточностью и нарушениями ритма сердца препаратом Цитохром С. Фарматека. 2013;10:91-6. [Semenova I.G., Ballyuzek M.F., Novikov Yu.A., Tugusheva F.A. Effectiveness of therapy with Cytochrome C in patients with chronic heart failure and rhythm disorders. Pharmateca. 2013;10:91-6 (in Russian)]
  24. Баллюзек М.Ф., Семенова И.Г. Рациональный выбор терапии препаратами метаболических групп при ишемической болезни сердца. Практическая медицина. 2013;3(73):47-51. [Ballyuzek M.F., Semenova I.G. Rational choice of therapy with metabolic groups drugs in ischemic heart disease. Practical medicine. 2013;3(73):47-51 (in Russian)]
  25. Лесиовская Е.Е. Антигипоксанты прямого действия - перспективные нейропротекторы. Terra Medica. 2012;4:49-57. [Lesiovskaya Ye.Ye. Antihypoxic drugs of direct action - promising neuroprotectants. Terra Medica. 2012;4:49-57 (in Russian)]

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2016 Bionika Media

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies