Metformin: review of current evidence and international recommendations


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Over period of past several decades, metformin is the most commonly prescribed drug for the treatment of type 2 diabetes mellitus (DM) in clinical practice. However, despite the length of time in use of this drug, not all mechanisms of its action have been studied. This review contains major data of the studies that have proven a high safety profile of metformin, which, coupled with high efficiency, allows us to call it one of the most popular drugs for the treatment of type 2 DM.

Full Text

Restricted Access

About the authors

Tatiana Yu. Demidova

Russian medical academy of continuing professional education

Email: t.y.demidova@gmail.com
MD, professor, professor of the Department of endocrinology

Irina N. Drozdova

Russian medical academy of continuing professional education

Email: docdrozdova@yandex.ru
graduate student, Department of endocrinology

References

  1. De Fronzo R.A. Metformin. The gold standard. A scientific handbook. Ed. Bailey C.J., Campbell J.W., Chan J.C.N. Wiley. 2007. P. 37.
  2. American diabetes association. Standards of medical care in diabetes - 2017. Diabetes Care. 2017. [Epub ahead of print]
  3. Aroda V.R., Edelstein S.L., Goldberg R.B., Knowler W.C., Marcovina S.M., Orchard T.J., Bray G.A., Schade D.S., Temprosa M.G., White N.H., Crandall J.P. Diabetes Prevention Program Research Group. Long-term metformin use and vitamin B12 deficiency in the diabetes prevention program outcomes study. J. Clin. Endocrinol. Metab. 2016;101:1754-61.
  4. Bennett W.L., Maruthur N.M., Singh S., Segal J.B., Wilson L.M., Chatterjee R., Marinopoulos S.S., Puhan M.A., Ranasinghe P., Block L., Nicholson W.K., Hutfless S., Bass E.B., Bolen S. Comparative effectiveness and safety of medications for type 2 diabetes: an update including new drugs and 2-drug combinations. Ann. Intern. Med. 2011;154(9):602-13.
  5. U.S. Food and Drug Administration. Metformincontaining drugs: drug safety communication - revised warnings for certain patients with reduced kidney function [Internet]. Available from http://www.fda.gov/Safety/MedWatch/SafetyInformation/ SafetyAlertsforHumanMedicalProducts/ucm494829.htm?source5govdelivery&utm_medium5email&utm_ source5govdelivery. Accessed 3 October 2016.
  6. Дедов И.И., Шестакова М.В. Алгоритмы специализированной медицинской помощи больным сахарным диабетом. 7-й вып. М., 2015. [Dedov I.I., Shestakova M.V. Algorithms of specialized medical care for patients with diabetes. 7th ed. Moscow, 2015. (in Russ.)]
  7. Luo Z., Zang M., Guo W. AMPKas a metabolic tumor suppressor: control of metabolism and cell growth. Future Oncol. 2010;6:457-70.
  8. Zhou G., Myers R., Li Y., Chen Y., Shen X., Fenyk-Melody J., Wu M., Ventre J., Doebber T., Fujii N., Musi N., Hirshman M.F., Goodyear L.J., Moller D.E. Role of AMP-activated protein kinase in mechanism of metformin action. J. Clin. Invest. 2001;108(8):1167-74.
  9. Yoshida T., Okuno A., Tanaka J., Takahashi K., Nakashima R., Kanda S., Ogawa J., Hagisawa Y., Fujiwara T. Metformin primarily decreases plasma glucose not by gluconeogenesis suppression but by activating glucose utilization in a non-obese type 2 diabetes Goto-Kakizaki rats. Eur. J. Farmacol. 2009;623(1-2):141-7.
  10. Zou M.H., Kirkpatrick S.S., Davis B.J., Nelson J.S., Wiles W.G., Schlattner U., Neumann D., Brownlee M., Freeman M.B., Goldman M.H. Activation of the AMP-activated protein kinase by the anti-diabetic drug metformin in vivo. Role of mitochondrial reactive nitrogen species. J. Biol. Chem. 2004;279:43940-51.
  11. Fujita Y., Hosowaka M., Fujimoto S., Mukai E., Abudukadier A., Obara A., et al. Metformin suppressis hepatic gluconeogenesis and lowers fasting blood glucose levers through reactive nitrogen species in mice. Diabetologia. 2010;53:1472-81.
  12. Foretz M., Hebrard S., Leclerc J., Zarrinpashnen E., Soty M., Mitheux G., Sakamoto K., Andreelli F., Viollet B. Metformin inhibits hepatic gluconeogenesis in mice independently of the LKB1/AMPK pathway via a decrease in hepatic energy state. J. Clin. Inverst. 2010;120:2355-69.
  13. Maida A., Lamont B.J., Cao X., Drucker D.J. Metformin regulates the incretin receptor axis via a pathway dependent on peroxisome proliferator-activated receptor-alpha in mice. Diabetologia. 2011;54:339-49.
  14. Scarpello J.H., Hodgson E., Howlett H.C. Effect of metformin on bile salt circulation and intestinal motility in type 2 diabetes mellitus. Diabet Med. 1998;15:651-6.
  15. Carter D., Howlett H.C., Wiernsperger N.F., Bailey C.J. Differential effects of metformin on bile salt absorption from the jejunum and ileum. Diabetes Obes. Metab. 2003;5:120-5.
  16. Carter D., Howlett H.C., Wiernsperger N.F., Bailey C. Effects of metformin on bile salt transport by mono layers of human intestinal Caco-2 cells. Diabetes Obes. Metab. 2002;4:424-7.
  17. Thomas C., Oloiello A., Noriega L., Strehlr A., Оury J., Rizzo G., Macchiarulo A., Yamamoto H., Mataki C., Pruzanski M., Pellicciari R., Auwerx J., Schoonjans K. TGR5-mediaifd bile acid sensing controls glucose homeostasis. Cell. Metab. 2009;10:167-77.
  18. Patti M.E., Houten S.M., Bianco A.C., Bernier R., Larsen P.R., Holst J.J., et al. Serum bile acids are higher is humans with prior gastric bypass potential contribution to improved glucose and lipid metabolism. Obesity (Silver Spring). 2009;17:1671-7.
  19. Hull R.L., Shen Z.P., Waits M.R., Kodama L., Carr D.B., Utzschneider K.M., Zraika S., Wang F., Kahn S.E. Long-term treatment with rosiglitaione and metformin reduces the extent of, but does not prevent, islet amyloid deposition in mice expressing the gene for human islet amyloid polypeptide. Diabetes. 2005;54(7):2235-44.
  20. DeFronzo R.A., Goodman A.M. Efficacy of metformin in patients with non-insulin-dependent diabetes mellitus. N. Engl. J. Med. 1995;333:541-9.
  21. UK Prospective Diabetes Study (UKPDS) Group Effect of intensive blood-glucose control with metformin on complications in overweight patients with type 2 diabetes (UKPDS 34). Lancet. 1998;352:854-65.
  22. Zhou K., Donnelly L., Yang J., Li M., Deshmukh H., Van Zuydam N., Ahlqvist E.; Wellcome Trust Case Control Consortium 2, Spencer C.C., Groop L., Morris A.D., Colhoun H.M., Sham P.C., McCarthy M.I., Palmer C.N., Pearson E.R. Heritability of variation in glycaemic response to metformin: a genome-wide complex trait analysis. Lancet Diabetes Endocrinol. 2014;2(6):481-7.
  23. van Leeuwen N., Nijpels G., Becker M.L., Deshmukh H., Zhou K., Stricker B.H., Uitterlinden A.G., Hofman A., van ‘t Riet E., Palmer C.N., Guigas B., Slagboom P.E., Durrington P., Calle R.A., Neil A., Hitman G., Livingstone S.J., Colhoun H., Holman R.R., McCarthy M.I., Dekker J.M., ‘t Hart L.M., Pearson E.R. A gene variant near ATM is significantly associated with metformin treatment response in type 2 diabetes: a replication and meta-analysis of five cohorts. Diabetologia. 2012;55:1971-7.
  24. GoDARTS and UKPDS Diabetes Pharmacogenetics Study Group Wellcome Trust Case Control Consortium 2 & MAGIC investigators. Common variants near ATM are associated with glycemic response to metformin in type 2 diabetes. Nat. Genet. 2011;43:117-20.
  25. Zhou K., Donnelly L., Burch L., Tavendale R., Doney A.S., Leese G., Hattersley A.T., McCarthy M.I., Morris A.D., Lang C.C., Palmer C.N., Pearson E.R. Loss-of-function CYP2C9 variants improve therapeutic response to sulfonylureas in type 2 diabetes: a Go-DARTS study. Clin. Pharmacol. Ther. 2010;87:52-6.
  26. UK Prospective Diabetes Study (UKPDS) Group Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33). Lancet. 1998;352:837-53.
  27. Diabetes Prevention Program Research Group Long-term safety, tolerability, and weight loss associated with metformin in the Diabetes Prevention Program Outcomes Study. Diabetes Care. 2012;35:731-7.
  28. Diabetes Prevention Program Research Group 10-year follow-up of diabetes incidence and weight loss in the Diabetes Prevention Program Outcomes Study. Lancet. 2009;374:1677-86.
  29. Kahn S.E., Haffner S.M., Heise M.A., Herman W.H., Holman R.R., Jones N.P., Kravitz B.G., Lachin J.M., O'Neill M.C., Zinman B., Viberti G. Glycemic durability of rosiglitazone, metformin, or glyburide monotherapy. N. Engl. J. Med. 2006;355:2427-43.
  30. Daskalopoulou S.S., Mikhailidis D.P., Elisaf M. Prevention and treatment of the metabolic syndrome. Angiology. 2004;55(6):3145-52.
  31. Mamputu J.C., Wiernsperger N.F., Renier G.A. Antiatherogenic properties of metformin: the experimental evidence. Diabetes Metab. 2003;29:6S71-6.
  32. Scarpello J.H.B. Improving survival with metformin: the evidence base today. Diabetes Metab. 2003;29:6S36-43.
  33. Charles M.A., Morange P., Eschwege E., André P., Vague P., Juhan-Vague I. Effects of weight change and metformin on fibrolysis and the von Willebrand factor in obese nondiabetic subjects. The BIGPRO1 Study. Diabetes Care. 1998;21(1 1):1967-75.
  34. Davis B.J., Xie Z., Viollet B., Zou M.H. Activation of the AMP-activated kinase by antidiabetes drug metformin stimulates nitric oxide synthesis in vivo by promoting the association of heat shock protein 90 and endothelial nitric oxide synthase. Diabetes. 2006;55(2):496-50.
  35. De Aquiar L.G., Bahia L.R., Villela N. Metformin improves endothelial vascular reactivity in first-degree relatives of type diabetic patient with metabolic syndrome and normal glucose tolerance. Diabetes Care. 2006;29(5):1083-9.
  36. Bailey C.J., Turner R.C. Metformin. N. Engl. J. Med. 1996;334:574-9.
  37. Grand P.J. Beneficial effects of metformin on hemostasis and vascular function in man. Diabetes Meteb. 2003;29:6S45-52.
  38. Jadhav S., Ferrell W., Greer I.A. at al. Effects of metformin on microvascular function and exercise tolerance in women with angina and normal coronary arteries: a randomized, double-blind, placebo-controlled study. J. Am. Coll. Cardiol. 2006;48(5):956-63.
  39. Katakam P.V., Ujhelyi M.R., Hoenig M., Miller A.W. Metformin improves vascular function in insulin-resistant rats. Hypertension. 2000;35:108-12.
  40. United Kingdom Prospective Diabetes Study (UKPDS). 13: Relative efficacy of randomly allocated diet, sulphonylurea, insulin, or metformin in patients with newly diagnosed non-insulin dependent diabetes fol- lowed for three years. BMJ. 1995;310:83-8.
  41. Wright A.D., Cull C.A., Macleod K.M., Holman R.R. Hypoglycemia in Type 2 diabetic patients randomized to and maintained on monotherapy with diet, sulfonylurea, metformin, or insulin for 6 years from diagnosis:UKPDS73. J. Diabetes Complications. 2006;20:395-401.
  42. Ong C.R., Molyneaux L.M., Constantino M.I., Twigg S.M., Yue D.K. Long-term efficacy of metformin therapy in monobese individuals with type 2 diabetes. Diabetes Care. 2006;29:2361-4.

Supplementary files

Supplementary Files
Action
1. JATS XML

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies