Post-infectious asthenia and COVID-19


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Post-infectious asthenia (PA) is a chronic multisystem disease manifesting itself in various constitutional and neurocognitive symptoms. Long-term symptoms after suffered coronaviral infection (COVID-19) are looking like PA in common, but at the same time have a number of characteristic features. This review is devoted to the epidemiology, pathogenesis, diagnosis and main approaches to the treatment of PA in general, and also after COVID-19.

Full Text

Restricted Access

About the authors

E. E Vasenina

Russian Medical Academy of Continuing Professional Education of the Ministry of Healthcare of Russia

Email: hel_vas0mail.ru
125993, Moscow, 2/1 Barrikadnaya Str., building 1

N. I Veryugina

Russian Medical Academy of Continuing Professional Education of the Ministry of Healthcare of Russia; City Clinical Hospital named after S.P. Botkin of the Moscow Department of Healthcare

Email: m_nadusha_i@mail.ru
125284, Moscow, 5 2nd Botkinsky Drive

O. S Levin

Russian Medical Academy of Continuing Professional Education of the Ministry of Healthcare of Russia

Email: oslevin@gmail.com
125993, Moscow, 2/1 Barrikadnaya Str., building 1

References

  1. Mao L., Jin H., Wang M. et al. Neurologic manifestations of hospitalized patients with coronavirus disease 2019 in Wuhan, China. JAMA Neurol. 2020; 77(6): 683-90. doi: 10.1001/jamaneurol.2020.1127.
  2. Greenhalgh T., Knight M., A'Court C. et al. Management of post-acute covid-19 in primary care. BMJ. 2020; 370: m3026. doi: 10.1136/ bmj.m3026.
  3. Brooks K., Webster K., Smith E. et al. The psychological impact of quarantine and how to reduce it: Rapid review of the evidence. Lancet. 2020; 395(10227): 912-20. doi: 10.1016/S0140-6736(20)30460-8.
  4. Xiang Y.-T., Zhao Y.-J., Liu Z.-H. et al. The COVID-19 outbreak and psychiatric hospitals in China: managing challenges through mental health service reform. Int J Biol Sci. 2020; 16(10): 1741-44. doi: 10.7150/ijbs.45072.
  5. Brodaty H., Altendorf A., Withall A., Sachdev P. Do people become more apathetic as they grow older? A longitudinal study in healthy individuals. Int Psychogeriatr. 2010; 22(3): 426-36. doi: 10.1017/S1041610209991335.
  6. Treadway M.T., Zald D.H. Reconsidering anhedonia in depression: Lessons from translational neuroscience. Neurosci Biobehav Rev. 2011; 35(3): 537-55. doi: 10.1016/j.neubiorev.2010.06.006.
  7. El Sayed S., Shokry D., Gomaa S.M. Post-COVID-19 fatigue and anhedonia: A cross-sectional study and their correlation to postrecovery period. Neuropsychopharmacol Rep. 2021; 41(1): 50-55. doi: 10.1002/npr2.12154.
  8. Goyal K., Chauhan P., Chhikara K. et al. Fear of COVID-2019: First suicidal case in India. Asian J Psychiatr. 2020; 49: 101989. doi: 10.1016/j.ajp.2020.101989.
  9. Del Rio C., Collins L.F., Malani P. Long-term health consequences of COVID-19. JAMA. 2020; 324(17): 1723-24. doi: 10.1001/ jama.2020.19719.
  10. Michelen M., Manoharan L., Elkheir N. et al. Characterising long-term covid-19: A rapid living systematic review. BMJ Glob Health. 2021; 6(9): e005427. doi: 10.1136/bmjgh-2021-005427.
  11. Lim E.J., Ahn Y.C., Jang E.S. et al. Systematic review and meta-analysis of the prevalence of chronic fatigue syndrome/myalgic encephalomyelitis (CFS/ME). J Transl Med. 2020; 18(1): 100. doi: 10.1186/s12967-020-02269-0.
  12. Prins J.B., van der Meer J.W., Bleijenberg G. Chronic fatigue syndrome. Lancet. 2006; 367(9507): 346-55. doi: 10.1016/S0140-6736(06)68073-2.
  13. Naess H., Sundal E., Myhr K.-M., Nyland H.I. Postinfectious and chronic fatigue syndromes: clinical experience from a tertiary-referral centre in Norway. In Vivo. 2010; 24(2): 185-88.
  14. Members of the International Association for Chronic Fatigue Syndrome/Myalgic Encephalomyelitis (IACFS/ME) and Primer Writing Committee. ME/CFS: A Primer for Clinical Practitioners. Chicago, IL: IACFS/ME and Primer Writing Committee. 2014; 50 pp. www.rnmot.ru
  15. Hatcher S., House A. Life events, difficulties and dilemmas in the onset of chronic fatigue syndrome: A case-control study. Psychol Med. 2003; 33(7): 1185-92. doi: 10.1017/s0033291703008274.
  16. Perrin R., Riste L., Hann M. Into the looking glass: Post-viral syndrome post COVID-19. Med Hypotheses. 2020; 144: 110055. doi: 10.1016/j.mehy.2020.110055.
  17. Fukuda K., Straus S.E., Hickie I. et al. The chronic fatigue syndrome: a comprehensive approach to its definition and study. Ann Intern Med. 1994; 121(12): 953-59. doi: 10.7326/0003-4819-121-12-199412150-00009.
  18. Carruthers B.M., Jain A.K., De Meirleir K.L. et al. Myalgic encephalomyelitis/chronic fatigue syndrome: A clinical case definition and guidelines for medical practitioners (an overview of the Canadian consensus document). J Chronic Fatigue Syndr. 2003; 11: 7-115. doi: 10.1300/J092v11n01_02.
  19. Clayton E.W. Beyond myalgic encephalomyelitis/chronic fatigue syndrome: An IOM report on redefining an illness. JAMA. 2015; 313(11): 1101-02. doi: 10.1001/jama.2015.1346.
  20. Komaroff A.L., Lipkin W.I. Insights from myalgic encephalomyelitis/chronic fatigue syndrome may help unravel the pathogenesis of post-acute COVID-19 syndrome. Trends Mol Med. 2021; 27(9): 895-906. doi: 10.1016/j.molmed.2021.06.002.
  21. Jason L.A., Porter N., Brown M. et al. CFS: A review of epidemiology and natural history studies. Bull IACFS ME. 2009; 17(3): 88-106.
  22. Demitrack M.A., Greden J.F. Chronic fatigue syndrome: The need for an integrative approach. Biol Psychiatry. 1991; 30(8): 747-52. doi: 10.1016/0006-3223(91)90231-a.
  23. Briggs N.C., Levine P.H. A comparative review of systemic and neurological symptomatology in 12 outbreaks collectively described as chronic fatigue syndrome, epidemic neuromyasthenia, and myalgic encephalomyelitis. Clin Infect Dis. 1994; 18(1): 32-42. doi: 10.1093/clinids/18.supplement_1.s32.
  24. Islam M.F., Cotler J., Jason L.A. Post-viral fatigue and COVID-19: Lessons from past epidemics. Fatigue. 2020; 8: 61-69. doi: 10.1080/21641846.2020.1778227.
  25. Katz B.Z., Shiraishi Y., Mears C.J. et al. Chronic fatigue syndrome after infectious mononucleosis in adolescents. Pediatrics. 2009; 124(1): 189-93. doi: 10.1542/peds.2008-1879.
  26. Hickie I., Davenport T., Wakefield D. et al. Post-infective and chronic fatigue syndromes precipitated by viral and non-viral pathogens: prospective cohort study. BMJ. 2006; 333(7568): 575. doi: 10.1136/bmj.38933.585764.AE.
  27. Magnus P., Gunnes N., Tveito K. et al. Chronic fatigue syndrome/myalgic encephalomyelitis (CFS/ME) is associated with pandemic influenza infection, but not with an adjuvanted pandemic influenza vaccine. Vaccine. 2015; 33(46): 6173-77. doi: 10.1016/j. vaccine.2015.10.018.
  28. Lam M.H., Wing Y.K., Yu M.W. et al. Mental morbidities and chronic fatigue in severe acute respiratory syndrome survivors: Long-term follow-up. Arch Intern Med. 2009; 169(22): 2142-47. doi: 10.1001/archinternmed.2009.384.
  29. Lyons D., Frampton M., Naqvi S. et al. Fallout from the COVID-19 pandemic - should we prepare for a tsunami of post viral depression? Ir J Psychol Med. 2020; 37(4): 295-300. doi: 10.1017/ipm.2020.40.
  30. Luyt C.-E., Combes A., Becquemin M.-H. et al. Long-term outcomes of pandemic 2009 influenza A(H1N1)-associated severe ARDS. Chest. 2012; 142(3): 583-92. doi: 10.1378/chest.11-2196.
  31. Rogers J.P., Chesney E., Oliver D. et al. Psychiatric and neuropsychiatric presentations associated with severe coronavirus infections: A systematic review and meta-analysis with comparison to the COVID-19 pandemic. Lancet Psychiatry. 2020; 7(7): 611-27. doi: 10.1016/S2215-0366(20)30203-0.
  32. Rasa S., Nora-Krukle Z., Henning N. et al. Chronic viral infections in myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS). J Transl Med. 2018; 16(1): 268. doi: 10.1186/s12967-018-1644-y.
  33. Mackay A., Tate W.P. A compromised paraventricular nucleus within a dysfunctional hypothalamus: A novel neuroinflammatory paradigm for ME/CFS. Int J Immunopathol Pharmacol. 2018; 32: 1-8. doi: 10.1177/2058738418812342.
  34. Olson K.L., Marc M.S., Grude L.A. et al. The hypothalamic pituitary-adrenal axis: The actions of the central nervous system and potential biomarkers. Anti-aging Therapeut. 2012; 13: 91-100.
  35. Strawbridge R., Sartor M.-L., Scott F. et al. Inflammatory proteins are altered in chronic fatigue syndrome - a systematic review and meta-analysis. Neurosci Biobehav Rev. 2019; 107: 69-83. doi: 10.1016/j.neubiorev.2019.08.011.
  36. Anderson G., Maes M. Mitochondria and immunity in chronic fatigue syndrome. Prog Neuropsychopharmacol Biol Psychiatry. 2020; 103: 109976. doi: 10.1016/j.pnpbp.2020.109976.
  37. Woodruff M.C., Ramonell R.P., Lee F.E.H., Sanz I. Clinically identifiable autoreactivity is common in severe SARS-CoV-2 infection. medRxiv. 2020. doi: 10.1101/2020.10.21.20216192.
  38. Hives L., Bradley A., Richards J. Can physical assessment techniques aid diagnosis in people with chronic fatigue syndrome/myalgic encephalomyelitis? A diagnostic accuracy study. BMJ Open. 2017; 7(11): e017521. doi: 10.1136/bmjopen-2017-017521.
  39. Maksoud R., du Preez S., Eaton-Fitch N. et al. A systematic review of neurological impairments in myalgic encephalomyelitis/chronic fatigue syndrome using neuroimaging techniques. PLoS One. 2020; 15(4): e0232475. doi: 10.1371/journal.pone.0232475.
  40. Desforges M., Le Coupanec A., Dubeau P. et al. Human coronaviruses and other respiratory viruses: Underestimated opportunistic pathogens of the central nervous system? Viruses. 2019; 12(1): 14. doi: 10.3390/v12010014.
  41. Varatharaj A., Thomas N., Ellul M.A. et al. Neurological and neuropsychiatric complications of COVID-19 in 153 patients: a UK-wide surveillance study. Lancet Psychiatry. 2020; 7(10): 875-82. doi: 10.1016/S2215-0366(20)30287-X.
  42. Nakatomi Y., Mizuno K., Ishii A. et al. Neuroinflammation in patients with chronic fatigue syndrome/myalgic encephalomyelitis: An 11C-(R)-PK11195 PET study. J Nucl Med. 2014; 55(6): 945-50. doi: 10.2967/jnumed.113.131045.
  43. Filler K., Lyon D., Bennett J. et al. Association of mitochondrial dysfunction and fatigue: A review of the literature. BBA Clin. 2014; 1: 12-23. doi: 10.1016/j.bbacli.2014.04.001.
  44. Behan W.M., More I.A., Behan P.O. Mitochondrial abnormalities in the postviral fatigue syndrome. Acta Neuropathol. 1991; 83(1): 61-65. doi: 10.1007/BF00294431.
  45. Broderick G., Craddock R.C., Whistler T. et al. Identifying illness parameters in fatiguing syndromes using classical projection methods. Pharmacogenomics. 2006; 7(3): 407-19. doi: 10.2217/14622416.7.3.407.
  46. Maes M., Twisk F.N.M. Why myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) may kill you: Disorders in the inflammatory and oxidative and nitrosative stress (IO&NS) pathways may explain cardiovascular disorders in ME/CFS. Neuro Endocrinol Lett. 2009; 30(6): 677-93.
  47. Fernandez-de-Las-Penas C., Gomez-Mayordomo V., Cuadrado M.L. et al. The presence of headache at onset in SARS-CoV-2 infection is associated with long-term post-COVID headache and fatigue: A case-control study. Cephalalgia. 2021; 3331024211020404. doi: 10.1177/03331024211020404. Online ahead of print.
  48. Ladds E., Rushforth A., Wieringa S. et al. Persistent symptoms after COVID-19: Qualitative study of 114 «long COVID» patients and draft quality criteria for services. BMC Health Serv Res. 2020; 20(1): 1144. doi: 10.1186/s12913-020-06001-y.
  49. Arnold D.T., Hamilton F.W., Milne A. et al. Patient outcomes after hospitalisation with COVID-19 and implications for follow-up: Results from a prospective UK cohort. Thorax. 2021; 76(4): 399-401. doi: 10.1136/thoraxjnl-2020-216086.
  50. Ayoubkhani D., Khunti K., Nafilyan V. et al. Epidemiology of post-COVID syndrome following hospitalisation with coronavirus: A retrospective cohort study. BMJ. 2021; 372: n693. doi: 10.1136/bmj.n693. www.rnmot.ru
  51. Huang C., Huang L., Wang Y. et al. 6-month consequences of COVID-19 in patients discharged from hospital: A cohort study. Lancet. 2021; 397(10270): 220-32. doi: 10.1016/S0140-6736(20)32656-8.
  52. Rudroff T., Fietsam A.C., Deters J.R. et al. Post-covid-19 fatigue: Potential contributing factors. Brain Sci. 2020; 10(12): 1012. doi: 10.3390/brainsci10121012.
  53. Desforges M., Le Coupanec A., Brison E. et al. Neuroinvasive and neurotropic human respiratory coronaviruses: Potential neurovirulent agents in humans. Adv Exp Med Biol. 2014; 807: 75-96. doi: 10.1007/978-81-322-1777-0_6.
  54. Meeusen R., Watson P., Hasegawa H. et al. Central fatigue: The serotonin hypothesis and beyond. Sports Med. 2006; 36(10): 881-909. doi: 10.2165/00007256-200636100-00006.
  55. Delorme C., Paccoud O., Kas A. et al. Covid-19 related encephalopathy: A case series with brain FDG-PET/CT findings. Eur J Neurol. 2020; 27(12): 2651-57. doi: 10.1111/ene.14478.
  56. Lulic T., El-Sayes J., Fasset H.J., Nelson A.J. Physical activity levels determine exercise induced changes in brain excitability. PLoS One. 2017; 12(3): e0173672. doi: 10.1371/journal.pone.0173672.
  57. Asadi-Pooya A.A., Simani L. Central nervous system manifestations of COVID-19: A systematic review. J Neurol Sci. 2020; 413: 116832. doi: 10.1016/j.jns.2020.116832.
  58. Morgul E., Bener A., Atak M. et al. COVID-19 pandemic and psychological fatigue in Turkey. Int J Soc Psychiatry. 2021; 67(2): 128-35. doi: 10.1177/0020764020941889.
  59. Jin M., Tong Q. Rhabdomyolysis as potential late complication associated with COVID-19. Emerg Infect Dis. 2020; 26(7): 1618-20. doi: 10.3201/eid2607.200445.
  60. VanderVeen B.N., Fix D.K., Montalvo R.N. et al. The regulation of skeletal muscle fatigability and mitochondrial function by chronically elevated interleukin-6. Exp Physiol. 2019; 104(3): 385-97. doi: 10.1113/EP087429.
  61. Mecenas P., Moreira Bastos R.T., Vallinoto A.C., Normando D. Effects of temperature and humidity on the spread of COVID-19: A systematic review. PLoS One. 2020; 15(9): e0238339. doi: 10.1371/journal.pone.0238339.
  62. Ssentongo P., Ssentongo A.E., Heilbrunn E.S. et al. Association of cardiovascular disease and 10 other pre-existing comorbidities with COVID-19 mortality: A systematic review and meta-analysis. PLoS One. 2020; 15(8): e0238215. doi: 10.1371/journal.pone.0238215.
  63. Kedor C., Freitag H., Meyer-Arndt L. et al. Chronic COVID-19 syndrome and chronic fatigue syndrome (ME/CFS) following the first pandemic wave in Germany - a first analysis of a prospective observational study. medRxiv. 2021; 1-23. doi: 10.1101/2021.02.06.21249256.
  64. Carfi A., Bernabei R., Landi F. Persistent symptoms in patients after acute COVID-19. JAMA. 2020; 324(6): 603-05. doi: 10.1001/ jama.2020.12603.
  65. Townsend L., Dyer A.H., Jones K. et al. Persistent fatigue following SARS-CoV-2 infection is common and independent of severity of initial infection. PLoS ONE. 2020; 15(11): e0240784. doi: 10.1371/journal.pone.0240784.
  66. Daynes E., Gerlis C., Chaplin E. et al. Early experiences of rehabilitation for individuals post-COVID to improve fatigue, breathlessness exercise capacity and cognition - A cohort study. Chron Respir Dis. 2021; 18: 14799731211015691. doi: 10.1177/14799731211015691.
  67. Ferraro F., Calafiore D., Dambruoso F. et al. COVID-19 related fatigue: Which role for rehabilitation in post-COVID-19 patients? A case series. J Med Virol. 2021; 93(4): 1896-99. doi: 10.1002/jmv.26717.
  68. Lv D., Chen X., Wang X. et al. Pulmonary function of patients with 2019 novel coronavirus induced-pneumonia: A retrospective cohort study. Ann Palliat Med. 2020; 9(5): 3447-52. doi: 10.21037/apm-20-1688.
  69. Корабельникова Е.А. Тревожные расстройства в условиях пандемии COVID-19. Медицинский вестник Северного Кавказа. 2021; 1: 79-85. @@Korabelnikova E.A. Anxiety disorders in the context of the COVID-19 pandemic. Meditsinskiy vestnik Severnogo Kavkaza = Medical Bulletin of the North Caucasus. 2021; 1: 79-85 (In Russ.). https://doi.org/10.14300/mnnc.2021.16022.
  70. Starling-Soares B., Carrera-Bastos P., Bettendorff L. Role of the synthetic B1 vitamin sulbutiamine on health. J Nutr Metab. 2020; 2020: 9349063. doi: 10.1155/2020/9349063.
  71. Вейн А.М., Федотова А.В., Гордеев С.А. Энерион - эффективное и безопасное средство для лечения астении у больных с психовегетативным синдромом. РМЖ. 2004; 10: 631-634. @@Vein A.M., Fedotova A.V., Gordeev S.A. Enerion is an effective and safe remedy for the treatment of asthenia in patients with psychovegetative syndrome. Russkiy meditsinskiy zhurnal = Russian Medical Journal. 2004; 10: 631-634 (In Russ.).
  72. Attademo L., Bernardini F. Are dopamine and serotonin involved in COVID-19 pathophysiology? Eur J Psychiatry. 2021; 35(1): 62-63. doi: 10.1016/j.ejpsy.2020.10.004.
  73. Левин О.С., Слизкова Ю.Б. Применение энериона при лечении астенических расстройств у больных, перенесших легкую черепно-мозговую травму. Журнал неврологии и психиатрии им. C.C. Корсакова. 2007; 5: 44-48. @@Levin O.S., Slizkova Yu.B. The use of Enerion in the treatment of asthenic disorders in patients after mild cranio-cerebral trauma. Journal of Neurology and Psychiatry named after S.S. Korsakov. 2007; 5: 44-48 (In Russ.).

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2021 Bionika Media

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies