Review of current opportunities in cardiovascular risks management in patients with type 2 diabetes mellitus


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Optimal management of patients with type 2 diabetes mellitus (DM 2) in connection with the appearance of new medicaments and treatment paradigm evolution can significantly improve the prognosis of the disease. However, modern advances in the management of cardiovascular risks in patients with type 2 diabetes are represented in clinical practice still not widely. That comes in some kind of conflict with the colossal need of patients for possible modification of the natural course of diabetes. The purpose of this review is to introduce a modern viewpoint at the problem of type 2 diabetes treatment, taking into account the therapeutic possibilities for different groups of patients. The review includes substantiation and modern stratification of the baseline cardiovascular risk in type 2 diabetes patients, data from clinical studies and analyzes for each specific group of patients, as well as a description of scientific tools for a broader practical interpretation of the results of these studies.

Full Text

Restricted Access

About the authors

T. Yu Demidova

N.I. Pirogov Russian National Research Medical University of the Ministry of Healthcare of Russia

109263, Moscow, 4/1 Shkuleva Str

A. M Mkrtamyan

A.I. Yevdokimov Moscow State University of Medicine And Dentistry of the Ministry of Healthcare of Russia; A.S. Loginov Moscow Clinical Research Center of the Healthcare Department of Moscow

111123, Moscow, 86/8 Enthuziastov Highway

References

  1. Kannel W.B., McGee D.L. Diabetes and cardiovascular disease. The Framingham study. JAMA. 1979; 241(19): 2035-38. doi: 10.1001/ jama.1979.03290450033020.
  2. O'Donnella C.J., Elosua R. [Cardiovascular risk factors. Insights from Framingham Heart Study]. Rev Esp Cardiol. 2008; 61(3): 299-310. doi: 10.1016/S1885-5857(08)60118-8.
  3. Emerging Risk Factors Collaboration; Di Angelantonio E., Kaptoge S., Wormser D. et al. Association of cardiometabolic multimorbidity with mortality. JAMA. 2015; 314(1): 52-60. doi: 10.1001/jama.2015.7008.
  4. Haffner S.M., Lehto S., Ronnemaa T. et al. Mortality from coronary heart disease in subjects with type 2 diabetes and in nondiabetic subjects with and without prior myocardial infarction. N Engl J Med. 1998; 339(4): 229-34. doi: 10.1056/NEJM199807233390404.
  5. Wright A.K., Suarez-Ortegon M.F., Read S.H. et al. Risk factor control and cardiovascular event risk in people with type 2 diabetes in primary and secondary prevention settings. Circulation. 2020; 142(20): 1925-36. doi: 10.1161/CIRCULATI0NAHA.120.046783.
  6. Алгоритмы специализированной медицинской помощи больным сахарным диабетом. Под ред. И.И. Дедова, М.В. Шестаковой, А.Ю. Майорова. 10-й выпуск. М. 2021; 221 с. @@Algorithms for specialized medical care for patients with diabetes mellitus. Ed. by I.I. Dedov, M.V. Shestakova, A.Yu. Mayorov. 10th edition. Moscow. 2021; 221 pp. (In Russ.). https://dx.doi.org/10.14341/DM12802. ISBN: 978-5-6043776-5-9.
  7. SCORE2 working group and ESC Cardiovascular risk collaboration. SCORE2 risk prediction algorithms: new models to estimate 10-year risk of cardiovascular disease in Europe. Eur Heart J. 2021; 42(25): 2439-54. doi: 10.1093/eurheartj/ehab309.
  8. Garber A.J., Handelsman Y., Grunberger G. et al. Consensus statement by the american association of clinical endocrinologists and American College of Endocrinology on the comprehensive type 2 diabetes management algorithm - 2020 executive summary. Endocr Pract. 2020; 26(1): 107-39. doi: 10.4158/CS-2019-0472.
  9. Cosentino F., Grant P.J., Aboyans V. et al. 2019 ESC Guidelines on diabetes, pre-diabetes, and cardiovascular diseases developed in collaboration with the EASD. Eur Heart J. 2020; 41(2): 255-323. doi: 10.1093/eurheartj/ehz486.
  10. Seidu S., Cos X., Brunton S. et al. A disease state approach to the pharmacological management of type 2 diabetes in primary care: A position statement by Primary Care Diabetes Europe. Prim Care Diabetes. 2021; 15(1): 31-51. doi: 10.1016/j.pcd.2020.05.004.
  11. Einarson T.R., Acs A., Ludwig C., Panton U.H. Prevalence of cardiovascular disease in type 2 diabetes: a systematic literature review of scientific evidence from across the world in 2007-2017. Cardiovasc Diabetol. 2018; 17(1): 83. doi: 10.1186/s12933-018-0728-6.
  12. Mosenzon O., Alguwaihes A., Leon J.L.A. et al. CAPTURE: a multinational, cross-sectional study of cardiovascular disease prevalence in adults with type 2 diabetes across 13 countries. Cardiovasc Diabetol. 2021; 20(1): 154. doi: 10.1186/s12933-021-01344-0.
  13. Goderis G., Vaes B., Mamouris P. et al. Prevalence of atherosclerotic cardiovascular disease, heart failure, and chronic kidney disease in patients with type 2 diabetes mellitus: A Primary Care Research Network-based Study. Exp Clin Endocrinol Diabetes. 2021. doi: 10.1055/a-1508-3912. Online ahead of print.
  14. Caparrotta T.M., Blackbourn L.A.K., McGurnaghan S.J. et al. Scottish Diabetes Research Network-Epidemiology Group. Prescribing paradigm shift? Applying the 2019 European Society of Cardiology - led guidelines on diabetes, prediabetes, and cardiovascular disease to assess eligibility for sodium-glucose cotransporter 2 inhibitors or glucagon-like peptide 1 receptor agonists as first-line monotherapy (or add-on to metformin monotherapy) in type 2 diabetes in Scotland. Diabetes Care. 2020; 43(9): 2034-41. doi: 10.2337/ dc20-0120.
  15. Shah A.D., Langenberg C., Rapsomaniki E. et al. Type 2 diabetes and incidence of cardiovascular diseases: a cohort study in 19 million people. Lancet Diabetes Endocrinol. 2015; 3(2): 105-13. doi: 10.1016/S2213-8587(14)70219-0.
  16. Дедов И.И., Шестакова М.В., Викулова О.К. с соавт. Эпидемиологические характеристики сахарного диабета в Российской Федерации: клинико-статистический анализ по данным регистра сахарного диабета на 01.01.2021. Сахарный диабет. 2021; 3: 204-221. @@Dedov I.I., Shestakova M.V., Vikulova O.K. et al. Epidemiological characteristics of diabetes mellitus in the Russian Federation: clinical and statistical analysis according to the Federal diabetes register data of 01.01.2021. Sakharnyy diabet = Diabetes. 2021; 3: 204-221 (In Russ.). https://dx.doi.org/10.14341/DM12759.
  17. Jenca D., Melenovsky V., Stehlik J. et al. Heart failure after myocardial infarction: incidence and predictors. ESC Heart Fail. 2021; 8(1): 222-37. doi: 10.1002/ehf2.13144.
  18. Berg D.D., Kolkailah A.A., Sarraju A. et al. Interpreting absolute and relative risk reduction in the context of recent cardiovascular outcome trials in patients with type 2 diabetes. Curr Diab Rep. 2021; 21(11): 45. doi: 10.1007/s11892-021-01417-0.
  19. Altman D.G., Andersen P.K. Calculating the number needed to treat for trials where the outcome is time to an event. BMJ. 1999; 319(7223): 1492-95. doi: 10.1136/bmj.319.7223.1492.
  20. Jansen J.P., Khalid J.M., Smyth M.D., Patel H. The number needed to treat and relevant between-trial comparisons of competing interventions. Clinicoecon Outcomes Res. 2018; 10: 865-71. doi: 10.2147/CEOR.S180491.
  21. Laiteerapong N., Ham S.A., Gao Y. et al. The legacy effect in type 2 diabetes: impact of early glycemic control on future complications (The Diabetes & Aging Study). Diabetes Care. 2019; 42(3): 416-26. doi: 10.2337/dc17-1144.
  22. ACCORD Study Group, Gerstein H.C., Miller M.E., Genuth S. et al. Long-term effects of intensive glucose lowering on cardiovascular outcomes. N Engl J Med. 2011; 364(9): 818-28. doi: 10.1056/NEJMoa1006524.
  23. Control Group, Turnbull F.M., Abraira C., Anderson R.J. et al. Intensive glucose control and macrovascular outcomes in type 2 diabetes. Diabetologia. 2009; 52(11): 2288-98. doi: 10.1007/s00125-009-1470-0.
  24. Effect of intensive blood-glucose control with metformin on complications in overweight patients with type 2 diabetes (UKPDS 34). UK Prospective Diabetes Study (UKPDS) Group. Lancet. 1998; 352(9131): 854-65.
  25. Gaede P., Vedel P., Larsen N. et al. Multifactorial intervention and cardiovascular disease in patients with type 2 diabetes. N Engl J Med. 2003; 348(5): 383-93. doi: 10.1056/NEJMoa021778.
  26. Gade P., Oellgaard J., Carstensen B. et al. Years of life gained by multifactorial intervention in patients with type 2 diabetes mellitus and microalbuminuria: 21 years follow-up on the STENO-2 randomised trial. Diabetologia. 2016; 59(11): 2298-307. doi: 10.1007/ s00125-016-4065-6.
  27. Oellgaard J., Gade P., Rossing P. et al. Reduced risk of heart failure with intensified multifactorial intervention in individuals with type 2 diabetes and microalbuminuria: 21 years of follow-up in the randomised STENO-2 study. Diabetologia. 2018; 61(8): 1724-33. doi: 10.1007/s00125-018-4642-y.
  28. Kahn S.E., Haffner S.M., Heise M.A. et al.; ADOPT Study Group. Glycemic durability of rosiglitazone, metformin, or glyburide monotherapy. N Engl J Med. 2006; 355(23) :2427-43. doi: 10.1056/NEJMoa066224.
  29. Nissen S.E., Wolski K. Effect of rosiglitazone on the risk of myocardial infarction and death from cardiovascular causes. N Engl J Med. 2007; 356(24): 2457-71. doi: 10.1056/NEJMoa072761.
  30. Khunti K., Gomes M.B., Pocock S. et al. Therapeutic inertia in the treatment of hyperglycaemia in patients with type 2 diabetes: A systematic review. Diabetes Obes Metab. 2018; 20(2): 427-37. doi: 10.1111/dom.13088. www.rnmot.ru
  31. Sinha B., Ghosal S. Meta-analyses of the effects of DPP-4 inhibitors, SGLT2 inhibitors and GLP1 receptor analogues on cardiovascular death, myocardial infarction, stroke and hospitalization for heart failure. Diabetes Res Clin Pract. 2019; 150: 8-16. doi: 10.1016/j. diabres.2019.02.014.
  32. Matthews D.R., Paldanius P.M., Proot P. et al. VERIFY study group. Glycaemic durability of an early combination therapy with vildagliptin and metformin versus sequential metformin monotherapy in newly diagnosed type 2 diabetes (VERIFY): A 5-year, multicentre, randomised, double-blind trial. Lancet. 2019; 394(10208): 1519-29. doi: 10.1016/S0140-6736(19)32131-2.
  33. Wexler D.J., Krause-Steinrauf H., Crandall J.P. et al. GRADE Research Group. Baseline characteristics of randomized participants in the glycemia reduction approaches in diabetes: A comparative effectiveness study (GRADE). Diabetes Care. 2019; 42(11): 2098-107. doi: 10.2337/dc19-0901.
  34. Nathan D.M. et al. Results of the glycemia reduction approaches in diabetes -- a comparative effectiveness (GRADE) study. 3-CT-SY18. Presented at: American Diabetes Association Scientific Sessions. June 25-29, 2021.
  35. Goldenberg R., Aroda V., Bardtrum L. et al. Achievement of near-normal hba1c with early initiation of oral semaglutide: An exploratory subgroup analysis of PIONEER 1. Can J Diabetes. 2021; 45(7): S28-S29 (abstract only). doi: 10.1016/j.jcjd.2021.09.085.
  36. Rosenstock J., Cariou B., Christiansen E. et al. 670-P: Time spent in glycemic control after initiating treatment with oral semaglutide vs. empagliflozin: An exploratory analysis of the PIONEER 2 trial. Diabetes. 2021; 70(Suppl 1): -. doi: 10.2337/db21-670-P.
  37. Buse J.B., Bode B.W., Mertens A. et al. PIONEER 7 investigators. Long-term efficacy and safety of oral semaglutide and the effect of switching from sitagliptin to oral semaglutide in patients with type 2 diabetes: a 52-week, randomized, open-label extension of the PIONEER 7 trial. BMJ Open Diabetes Res Care. 2020; 8(2): e001649. doi: 10.1136/bmjdrc-2020-001649.
  38. Hedrington M.S., Davis S.N. Oral semaglutide for the treatment of type 2 diabetes. Expert Opin Pharmacother. 2019; 20(2): 133-41. doi: 10.1080/14656566.2018.1552258.
  39. Lim G.B. GLP1R agonists: Primary cardiovascular prevention and oral administration. Nat Rev Cardiol. 2019; 16(8): 453. doi: 10.1038/ s41569-019-0232-z.
  40. URL: https://ascend.medsci.ox.ac.uk/news/major-new-study-could-help-protect-millions-with-type-2-diabetes-from-cardiovascular-disease (date of access - 01.10.2021).
  41. Buse J.B., Wexler D.J., Tsapas A. et al. 2019 update to: Management of hyperglycemia in type 2 diabetes, 2018. A consensus report by the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD). Diabetes Care. 2020; 43(2): 487-93. doi: 10.2337/dci19-0066.
  42. Davies M.J., Kloecker D.E., Webb D.R. et al. Number needed to treat in cardiovascular outcome trials of glucagon-like peptide-1 receptor agonists: A systematic review with temporal analysis. Diabetes Obes Metab. 2020; 22(9): 1670-77. doi: 10.1111/dom.14066.
  43. Natali A., Nesti L., Trico D., Ferrannini E. Effects of GLP-1 receptor agonists and SGLT-2 inhibitors on cardiac structure and function: a narrative review of clinical evidence. Cardiovasc Diabetol. 2021; 20(1): 196. doi: 10.1186/s12933-021-01385-5.
  44. Zinman B., Wanner C., Lachin J.M. et al. EMPA-REG OUTCOME Investigators. Empagliflozin, cardiovascular outcomes, and mortality in type 2 diabetes. N Engl J Med. 2015; 373(22): 2117-28. doi: 10.1056/NEJMoa1504720.
  45. Alzaid A. Empa's new clothes: The untold story of the EMPA-REG outcome trial. Diabetes Technol Ther. 2017; 19(6): 324-27. doi: 10.1089/dia.2017.0033.
  46. FDA Briefing Document Endocrine and Metabolic Drug Advisory Committee Meeting June 28, 2016. URL: https://www.fda.gov/media/98910/download (date of access - 01.10.2021).
  47. Neal B., Perkovic V., Mahaffey K.W. et al. CANVAS Program Collaborative Group. Canagliflozin and cardiovascular and renal events in type 2 diabetes. N Engl J Med. 2017; 377(7): 644-57. doi: 10.1056/NEJMoa1611925.
  48. Neal B., Perkovic V., Mahaffey K.W. et al. Optimizing the analysis strategy for the CANVAS Program: A prespecified plan for the integrated analyses of the CaNvAS and CAnVaS-R trials. Diabetes Obes Metab. 2017; 19(7): 926-35. doi: 10.1111/dom.12924.
  49. Wiviott S.D., Raz I., Bonaca M.P. et al. DECLARE-TIMI 58 Investigators. Dapagliflozin and cardiovascular outcomes in type 2 diabetes. N Engl J Med. 2019; 380(4): 347-57. doi: 10.1056/NEJMoa1812389.
  50. Furtado R.H.M., Bonaca M.P., Raz I. et al. Dapagliflozin and cardiovascular outcomes in patients with type 2 diabetes mellitus and previous myocardial infarction. Circulation. 2019; 139(22): 2516-27. doi: 10.1161/CIRCULATIONAHA.119.039996.
  51. Fitchett D., Inzucchi S.E., Zinman B. et al. Mediators of the improvement in heart failure outcomes with empagliflozin in the EMPA-REG OUTCOME trial. ESC Heart Fail. 2021. doi: 10.1002/ehf2.13615. Online ahead of print.
  52. Li J., Woodward M., Perkovic V. et al. Mediators of the effects of canagliflozin on heart failure in patients with type 2 diabetes. JACC Heart Fail. 2020; 8(1): 57-66. doi: 10.1016/j.jchf.2019.08.004.
  53. Berg D., Wiviott S., Goodrichet E. et al. Mediation analysis for dapagliflozin and the reduction in hospitalization for heart failure in DECLARE-TIMI 58. J Am Coll Cardiol. 2021; 77(18 Suppl 1): 869. doi: 10.1016/S0735-1097(21)02228-2.
  54. Packer M. SGLT2 inhibitors produce cardiorenal benefits by promoting adaptive cellular reprogramming to induce a state of fasting mimicry: A paradigm shift in understanding their mechanism of action. Diabetes Care. 2020; 43(3): 508-11. doi: 10.2337/dci19-0074.
  55. McMurray J.J.V., Solomon S.D., Inzucchi S.E. et al. DAPA-HF Trial Committees and Investigators. Dapagliflozin in patients with heart failure and reduced ejection fraction. N Engl J Med. 2019; 381(21): 1995-2008. doi: 10.1056/NEJMoa1911303.
  56. Packer M., Anker S.D., Butler J. et al. EMPEROR-Reduced Trial Investigators. Cardiovascular and renal outcomes with empagliflozin in heart failure. N Engl J Med. 2020; 383(15): 1413-24. doi: 10.1056/NEJMoa2022190.
  57. Zelniker T.A., Wiviott S.D., Raz I. et al. SGLT2 inhibitors for primary and secondary prevention of cardiovascular and renal outcomes in type 2 diabetes: A systematic review and meta-analysis of cardiovascular outcome trials. Lancet. 2019; 393(10166): 31-39. doi: 10.1016/S0140-6736(18)32590-X.
  58. Berg D.D., Wiviott S.D., Scirica B.M. et al. A biomarker-based score for risk of hospitalization for heart failure in patients with diabetes. Diabetes Care. 2021; 44(11): 2573-81. doi: 10.2337/dc21-1170.
  59. Berg D.D., Wiviott S.D., Scirica B.M. et al. Heart failure risk stratification and efficacy of sodium-glucose cotransporter-2 inhibitors in patients with type 2 diabetes mellitus. Circulation. 2019; 140(19): 1569-77. doi: 10.1161/CIRCULATIONAHA.119.042685.
  60. Huthmacher J.A., Meier J.J., Nauck M.A. Efficacy and safety of short- and long-acting glucagon-like peptide 1 receptor agonists on a background of basal insulin in type 2 diabetes: A meta-analysis. Diabetes Care. 2020; 43(9): 2303-12. doi: 10.2337/dc20-0498.
  61. Sinha B., Ghosal S. Meta-analyses of the effects of DPP-4 inhibitors, SGLT2 inhibitors and GLP1 receptor analogues on cardiovascular death, myocardial infarction, stroke and hospitalization for heart failure. Diabetes Res Clin Pract. 2019; 150: 8-16. doi: 10.1016/j. diabres.2019.02.014.
  62. Longato E., Di Camillo B., Sparacino G. et al. Cardiovascular effectiveness of human-based vs. exendin-based glucagon like peptide-1 receptor agonists: a retrospective study in patients with type 2 diabetes. Eur J Prev Cardiol. 2021; 28(1): 22-29. doi: 10.1093/eurjpc/zwaa081.
  63. Nauck M.A., Quast D.R., Wefers J., Meier J.J. GLP-1 receptor agonists in the treatment of type 2 diabetes - state-of-the-art. Mol Metab. 2021; 46: 101102. doi: 10.1016/j.molmet.2020.101102. www.rnmot.ru
  64. Marso S.P., Daniels G.H., Brown-Frandsen K. et al. LEADER Steering Committee; LEADER Trial Investigators. liraglutide and cardiovascular outcomes in type 2 diabetes. N Engl J Med. 2016; 375(4): 311-22. doi: 10.1056/NEJMoa1603827.
  65. Verma S., Poulter N.R., Bhatt D.L. et al. Effects of liraglutide on cardiovascular outcomes in patients with type 2 diabetes mellitus with or without history of myocardial infarction or stroke. Circulation. 2018; 138(25): 2884-94. doi: 10.1161/CIRCULATIONAHA.118.034516.
  66. le Roux C.W., Astrup A., Fujioka K. et al. SCALE Obesity Prediabetes NN8022-1839 Study Group. 3 years of liraglutide versus placebo for type 2 diabetes risk reduction and weight management in individuals with prediabetes: A randomised, double-blind trial. Lancet. 2017; 389(10077): 1399-1409. doi: 10.1016/S0140-6736(17)30069-7.
  67. Gerstein H.C., Colhoun H.M., Dagenais G.R. et al. REWIND Investigators. Dulaglutide and cardiovascular outcomes in type 2 diabetes (REWIND): A double-blind, randomised placebo-controlled trial. Lancet. 2019; 394(10193): 121-30. doi: 10.1016/S0140-6736(19)31149-3.
  68. Marso S.P., Bain S.C., Consoli A. et al. SUSTAIN-6 Investigators. Semaglutide and cardiovascular outcomes in patients with type 2 diabetes. N Engl J Med. 2016; 375(19): 1834-44. doi: 10.1056/NEJMoa1607141.
  69. Verma S., Fainberg U., Husain M. et al. Applying REWIND cardiovascular disease criteria to SUSTAIN 6 and PIONEER 6: An exploratory analysis of cardiovascular outcomes with semaglutide. Diabetes Obes Metab. 2021; 23(7): 1677-80. doi: 10.1111/dom.14360.
  70. Husain M., Birkenfeld A.L., Donsmark M. et al. PIONEER 6 Investigators. Oral semaglutide and cardiovascular outcomes in patients with type 2 diabetes. N Engl J Med. 2019; 381(9): 841-51. doi: 10.1056/NEJMoa1901118.
  71. Husain M., Bain S.C., Jeppesen O.K. et al. Semaglutide (SUSTAIN and PIONEER) reduces cardiovascular events in type 2 diabetes across varying cardiovascular risk. Diabetes Obes Metab. 2020; 22(3): 442-51. doi: 10.1111/dom.13955.
  72. Husain M., Bain S.C., Holst A.G. et al. Effects of semaglutide on risk of cardiovascular events across a continuum of cardiovascular risk: Combined post hoc analysis of the SUSTAIN and PIONEER trials. Cardiovasc Diabetol. 2020; 19(1): 156. doi: 10.1186/s12933-020-01106-4.
  73. Evans L.M., Mellbin L., Johansen P. et al. A population-adjusted indirect comparison of cardiovascular benefits of once-weekly subcutaneous semaglutide and dulaglutide in the treatment of patients with type 2 diabetes, with or without established cardiovascular disease. Endocrinol Diabetes Metab. 2021; 4(3): e00259. doi: 10.1002/edm2.259.
  74. A Heart Disease Study of Semaglutide in Patients With Type 2 Diabetes (SOUL). URL: https://clinicaltrials.gov/ct2/show/NCT03914326 (date of access - 01.10.2021).
  75. Gay H., Yu J., Petito L. et al. Abstract 14678: Prevalence of SGLT-2 inhibitor and GLP-1 receptor agonist prescriptions in patients with comorbid diabetes and cardiovascular disease in an integrated academic health system. Circulation. 2020; 142: A14678. doi: 10.1161/ circ.142.suppl_3.14678.
  76. Arnold S.V., Tang F., COOPER A. et al. 324-OR: Global use of SGLT2 inhibitors and GLP-1 receptor agonists in type 2 diabetes: Results from DISCOVER. Diabetes. 2021; 70(Supplement 1): -. doi: 10.2337/db21-324-OR.
  77. Drucker D.J. Coronavirus infections and type 2 diabetes - shared pathways with therapeutic implications. Endocr Rev. 2020; 41(3): bnaa011. doi: 10.1210/endrev/bnaa011.
  78. Демидова Т.Ю., Лобанова К.Г, Переходов С.Н. с соавт. Клинико-лабораторная характеристика пациентов с COVID-19 и сопутствующим сахарным диабетом 2-го типа. Кардиоваскулярная терапия и профилактика. 2021; 1: 47-58. @@Demidova T.Yu., Lobanova K.G., Perekhodov S.N. et al. Clinical and laboratory characteristics of patients with COVID-19 and concomitant type 2 diabetes. Kardiovaskulyarnaya terapiya i profilaktika = Cardiovascular Therapy and Prevention. 2021; 1: 47-58 (In Russ.). https://doi.org/10.15829/1728-8800-2021-2750.
  79. Kosiborod M.N., Esterline R., Furtado R.H.M. et al. Dapagliflozin in patients with cardiometabolic risk factors hospitalised with COVID-19 (DARE-19): A randomised, double-blind, placebo-controlled, phase 3 trial. Lancet Diabetes Endocrinol. 2021; 9(9): 586-94. doi: 10.1016/S2213-8587(21)00180-7.
  80. Hariyanto T.I., Intan D., Hananto J.E. et al. Pre-admission glucagon-like peptide-1 receptor agonist (GLP-1RA) and mortality from coronavirus disease 2019 (Covid-19): A systematic review, meta-analysis, and meta-regression. Diabetes Res Clin Pract. 2021; 179: 109031. doi: 10.1016/j.diabres.2021.109031.
  81. Anderson J.E. Combining glucagon-like peptide 1 receptor agonists and sodium-glucose cotransporter 2 inhibitors to target multiple organ defects in type 2 diabetes. Diabetes Spectr. 2020; 33(2): 165-74. doi: 10.2337/ds19-0031.

Supplementary files

Supplementary Files
Action
1. JATS XML

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies