The role of interferon gamma in novel coronavirus infection pathogenesis and the possibilities of immune response correction


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

The purpose of current review is to consider the main pathophysiological mechanisms underlying the potential use of interferon gamma in COVID-19 infection in different groups of patients. Nowadays, there are no significant research works on its use in elderly patients, patients with significant concomitant pathologies and rheumatic diseases against the background of a novel coronavirus infection. The article contains possible options for initiating and continuing treatment with recombinant interferon gamma-based medicaments in this group of patients.

Full Text

Restricted Access

About the authors

Vitaly V. Vakhlevsky

S.M. Kirov Military Medical Academy of the Ministry of Defense of the Russia

adjunct of the Department of faculty therapy

Vadim V. Tyrenko

S.M. Kirov Military Medical Academy of the Ministry of Defense of the Russia

MD, professor, head of the Department of faculty therapy

Sergei G. Bologov

S.M. Kirov Military Medical Academy of the Ministry of Defense of the Russia

MD, professor of the Department of faculty therapy

Evgeny V. Kryukov

S.M. Kirov Military Medical Academy of the Ministry of Defense of the Russia

MD, professor, head

Mikhail M. Toporkov

S.M. Kirov Military Medical Academy of the Ministry of Defense of the Russia

PhD, senior lecturer of the Department of faculty therapy

References

  1. Лобзин Ю.В., Белозеров Е.С., Беляева Т.В., Вожанин В.М. Вирусные болезни человека. С-Пб: СпецЛит. 2015; 400 с. [Lobzin Yu.V., Belozerov E.S., Belyaeva T.V., Vozhanin V.M. Human viral diseases. Saint Petersburg: Spetslit. 2015; 400 pp. (In Russ.)]. ISBN: 978-5-299-00641-4.
  2. Tyrrell D.A., Bynoe M.L. Cultivation of viruses from a high proportion of patients with colds. Lancet. 1966; 1(7428): 76-77. doi: 10.1016/ s0140-6736(66)92364-6.
  3. Хаитов Р.М. Иммунология: структура и функции иммунной системы. Учебное пособие. М.: ГЭОТАР-Медиа. 2013; 280 с. [Khaitov R.M. Immunology: structure and function of the immune system. Textbook. Moscow; GEOTAR-Media. 2013; 280 pp. (In Russ.)]. ISBN: 978-5-9704-2644-9.
  4. Xu Z., Shi L., Wang Y. et al. Pathological findings of COVID-19 associated with acute respiratory distress syndrome. Lancet Respir Med. 2020; 8(4): 420-22. doi: 10.1016/S2213-2600I20I30076-X.
  5. Huang C., Wang Y., Li X. et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020; 395(10223): 497-506. doi: 10.1016/S0140-6736(20)30183-5.
  6. Zhao Y., Qin L., Zhang P. et al. Longitudinal COVID-19 profiling associates IL-1RA and IL-10 with disease severity and RANTES with mild disease. JCI Insight. 2020; 5(13): e139834. doi: 10.1172/jci.insight.139834.
  7. Nara N., Nakayama Y., Okamoto S. et al. Disruption of CXC motif chemokine ligand-14 in mice ameliorates obesity-induced insulin resistance. J. Biol Chem. 2007; 282(42): 30794-803. doi: 10.1074/jbc.M700412200.
  8. Huber J., Kiefer F.W., Zeyda M. et al. CC chemokine and CC chemokine receptor profiles in visceral and subcutaneous adipose tissue are altered in human obesity. J. Clin Endocrinol Metab. 2008; 93(8): 3215-21. doi: 10.1210/jc.2007-2630.
  9. Duffaut C., Zakaroff-Girard A., Bourlier V. et al. Interplay between human adipocytes and T. lymphocytes in obesity: CCL20 as an adipochemokine and T. lymphocytes as lipogenic modulators. Arterioscler Thromb Vasc Biol. 2009; 29(10): 1608-14. doi: 10.1161/ ATVBAHA.109.192583.
  10. Hansson G. K., Libby P., Tabas I. Inflammation and plaque vulnerability. J. Intern Med. 2015; 278(5): 483-93. doi: 10.1111/joim.12406.
  11. Kirii H., Niwa T., Yamada Y. et al. Lack of Interleukin-1B decreases the severity of atherosclerosis in ApoE-deficient mice. Arterioscler Thromb Vasc Biol. 2003; 23(4): 656-60. doi: 10.1161/01.ATV.0000064374.15232.C3.
  12. Bermudez E.A., Rifai N., Buring J. et al. Interrelationships among circulating interleukin-6, C-reactive protein, and traditional cardiovascular risk factors in women. Arterioscler Thromb Vasc Biol. 2002; 22(10): 1668-73. doi: 10.1161/01.atv.0000029781.31325.66.
  13. Козлов В.К. Цитокинотерапия: патогенетическая направленность и клиническая эффективность при инфекционных заболеваниях. Руководство для врачей. СПб: Альтер Эго. 2010; 148 с. [Kozlov V.K. Cytokine therapy: pathogenetic focus and clinical efficacy in infectious diseases. A guide for physicians. Saint Petersburg: Alter Ego. 2010; 148 pp. (In Russ.)]. ISBN: 978-5-91573-022-8.
  14. Vabret N., Britton G.J., Gruber C. et al.; Sinai Immunology Review Project. Immunology of COVID-19: Current state of the science. Immunity. 2020; 52(6): 910-41. doi: 10.1016/j.immuni.2020.05.002.
  15. Tan L., Wang Q., Zhang D. et al. Lymphopenia predicts disease severity of COVID-19: A descriptive and predictive study. Signal Transduct Target Ther. 2020; 5(1): 33. doi: 10.1038/s41392-020-0148-4.
  16. Мясников А.Л., Бернс С.А., Талызин П.А., Ершов Ф.И. Интерферон гамма в терапии пациентов с COVID-19 среднетяжелого течения. Вопросы вирусологии. 2021; 1: 47-54. [Myasnikov A.L., Berns S.A., Talyzin P.A., Ershov F.I. Interferon gamma in the treatment of patients with moderate COVID-19. Voprosy virusologii = Issues of Virology. 2021; 1: 47-54 (In Russ.)]. https://doi.org/10.36233/0507-4088-24.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2021 Bionika Media

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies