Biomarkers in cardiology: microRNA and heart failure


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

MicroRNAs (miRNAs) are small non-coding molecules of ribonucleic acid (RNA). MiRNAs regulate gene expression at the post-transcriptional level by binding to the 3'-untranslated regions of the target miRNA. MiRNAs have been identified as key regulators of complex biological processes associated with multiple cardiovascular pathologies, including left ventricular (LV) hypertrophy, coronary artery disease (CAD), heart failure (HF), hypertension, and arrhythmias. MiRNAs in the bloodstream have been investigated as novel biological markers, especially in the context of acute myocardial infarction (AMI) and HF. In our review, we presented data on the role of miRNA in HF.

Full Text

Restricted Access

About the authors

Amina M. Alieva

N.I. Pirogov Russian National Research Medical University of the Ministry of Healthcare of Russia

Email: amisha_alieva@mail.ru
PhD, associate professor of the Department of hospital therapy No. 2 of the Faculty of general medicine Moscow

Natalia V. Teplova

N.I. Pirogov Russian National Research Medical University of the Ministry of Healthcare of Russia

MD, professor, head of the Department of clinical pharmacology of the Faculty of general medicine Moscow

Vladimir A. Kislyakov

N.I. Pirogov Russian National Research Medical University of the Ministry of Healthcare of Russia

Email: kvadoctor@mail.ru
PhD, associate professor of the Department of hospital therapy No. 2 of the Faculty of general medicine Moscow

Kira V. Voronkova

N.I. Pirogov Russian National Research Medical University of the Ministry of Healthcare of Russia

Email: kiravoronkova@yandex.ru
MD, professor of the Department of neurology of the Faculty of continuous professional education Moscow

Lidia M. Shnakhova

I.M. Sechenov First Moscow State Medical University of the of the Ministry of Healthcare of Russia (Sechenovskiy University)

Email: shnakhova_l_m@staff.sechenov.ru
doctor Moscow

Ramiz K. Valiev

A.S. Loginov Moscow Clinical Scientific and Practical Center of the Moscow Department of Healthcare

Email: radiosurgery@bk.ru
PhD, head of the Department of oncosurgery No. 2 Moscow

Alik M. Rakhaev

Kh.M. Berbekov Kabardino-Balkarian State University of the Ministry of Science and Higher Education of Russia

Email: alikrahaev@yandex.ru
MD, professor of the Department of children's diseases, obstetrics and gynecology of the Faculty of general medicine Nalchik

Dzhannet A. Elmurzaeva

Kh.M. Berbekov Kabardino-Balkarian State University of the Ministry of Science and Higher Education of Russia

Email: jannet.elmurzaeva@yandex.ru
PhD, associate professor of the Department of microbiology, virology and immunology of the Faculty of medicine Nalchik

Darina S. Malkarova

Kh.M. Berbekov Kabardino-Balkarian State University of the Ministry of Science and Higher Education of Russia

6th year student of the Faculty of general medicine Nalchik

Igor G. Nikitin

N.I. Pirogov Russian National Research Medical University of the Ministry of Healthcare of Russia

Email: igor.nikitin.64@mail.ru
MD, professor, head of the Department of hospital therapy No. 2 of the Faculty of general medicine Moscow

References

  1. Xue R., Tan W., Wu Y. et al. Role of exosomal miRNAs in Heart Failure. Front Cardiovasc Med. 2020; 7: 592412. doi: 10.3389/fcvm.2020.592412.
  2. Shaker F., Nikravesh A., Arezumand R. et al. Web-based tools for miRNA studies analysis.Comput Biol Med. 2020; 127: 104060. doi: 10.1016/j.compbiomed.2020.104060.
  3. Reinhart B.J., Slack F.J., Basson M. et al. The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans. Nature. 2000; 403(6772): 901-06. doi: 10.1038/35002607.
  4. Mitchell P.S., Parkin R.K., Kroh E.M. et al. Circulating microRNAs as stable blood-based markers for cancer detection. Proc Natl Acad Sci U S A. 2008; 105(30): 10513-18. doi: 10.1073/pnas.0804549105.
  5. Zhou S.S., Jin J.P., Wang J.Q. et al. MiRNAs in cardiovascular diseases: potential biomarkers, therapeutic targets and challenges. Acta Pharmacol Sin. 2018; 39(7): 1073-84. doi: 10.1038/aps.2018.30.
  6. Nonn L. МикроРНК: от биологии к клиническому применению. Остеопороз и остеопатии. 2016; 1: 7-8. [Nonn L. MicroRNAs: from biology to clinical implementation. Osteoporoz i osteopatii = Osteoporosis and Bone Diseases. 2016; 1: 7-8 (In Russ.)]. https://doi.org/10.14341/osteo201617-8.
  7. Wojciechowska A., Braniewska A., Kozar-Kaminska K. MicroRNA in cardiovascular biology and disease. Adv Clin Exp Med. 2017; 26(5): 865-74. doi: 10.17219/acem/62915.
  8. Луценко А.С., Белая Ж.Е., Пржиялковская Е.Г, Мельниченко Г.А. МикроРНК и их значение в патогенезе СТГ-продуцирующих аденом гипофиза. Вестник Российской академии медицинских наук. 2017; 4: 290-298.
  9. Гареев И.Ф., Бейлерли О.А. Циркулирующие микроРНК как биомаркеры: какие перспективы? Профилактическая медицина. 2018; 6: 142-150
  10. Жанин И.С. Профиль экспрессии микроРНКигенов-мишеней при нарушениях мозгового кровообращения в эксперименте и клинике. Дис. ... канд. мед. наук. Москва. 2020; 116 с
  11. Forero D.A., Gonzalez-Giraldo Y., Castro-Vega L.J., Barreto GE. qPCR-based methods for expression analysis of miRNAs. Biotechniques. 2019; 67(4): 192-99. doi: 10.2144/btn-2019-0065.
  12. Гудкова А.Я., Давыдова В.Г, Бежанишвили Т.Г с соавт. Содержание циркулирующей микроРНК-21 у пациентов с гипертрофической кардиомиопатией. Терапевтический архив. 2020; 4: 51-56.
  13. Thum T., Galuppo P., Wolf C. et al. MicroRNAs in the human heart: a clue to fetal gene reprogramming in heart failure. Circulation. 2007; 116(3): 258-67. doi: 10.1161/CIRCULATIONAHA.107.687947.
  14. Da Costa Martins P.A., Bourajjaj M., Gladka M. et al. Conditional dicer gene deletion in the postnatal myocardium provokes spontaneous cardiac remodeling. Circulation. 2008; 118(15): 1567-76. doi: 10.1161/CIRCULATIONAHA.108.769984.
  15. Romaine S.P., Tomaszewski M., Condorelli G., Samani N.J. MicroRNAs in cardiovascular disease: An introduction for clinicians. Heart. 2015; 101(12): 921-28. doi: 10.1136/heartjnl-2013-305402.
  16. Cakmak H.A., Coskunpinar E., Ikitimur B. et al. The prognostic value of circulating microRNAs in heart failure: preliminary results from a genome-wide expression study. J Cardiovasc Med (Hagerstown). 2015; 16(6): 431-37. doi: 10.2459/JCM.0000000000000233.
  17. Sucharov C., Bristow M.R., Port J.D. MiRNA expression in the failing human heart: functional correlates. J Mol Cell Cardiol. 2008; 45(2): 185-92. doi: 10.1016/j.yjmcc.2008.04.014.
  18. Van Rooij E., Sutherland L.B., Liu N. et al. A signature pattern of stress-responsive microRNAs that can evoke cardiac hypertrophy and heart failure. Proc Natl Acad Sci U S A. 2006; 103(48): 18255-60. doi: 10.1073/pnas.0608791103.
  19. Ovchinnikova E.S., Schmitter D., Vegter E.L. et al. Signature of circulating microRNAs in patients with acute heart failure. Eur J Heart Fail. 2016; 18(4): 414-23. doi: 10.1002/ejhf.332.
  20. Sygitowicz G., Tomaniak M., Btaszczyk O. et al. Circulating microribonucleic acids miR-1, miR-21 and miR-208a in patients with symptomatic heart failure: Preliminary results. Arch Cardiovasc Dis. 2015; 108(12): 634-42. doi: 10.1016/j.acvd.2015.07.003.
  21. Endo K., Naito Y., Ji X. et al. MicroRNA 210 as a biomarker for congestive heart failure. Biol Pharm Bull. 2013; 36(1): 48-54. doi: 10.1248/bpb.b12-00578.
  22. Seronde M.F., Vausort M., Gayat E. et al. Circulating microRNAs and outcome in patients with acute heart failure. PLoS One. 201518; 10(11): e0142237. doi: 10.1371/journal.pone.0142237.
  23. Goren Y., Kushnir M., Zafrir B. et al. Serum levels of microRNAs in patients with heart failure. Eur J Heart Fail. 2012; 14(2): 147-54. doi: 10.1093/eurjhf/hfr155.
  24. Bayes-Genis A., Lanfear D.E., de Ronde M.W.J. et al. Prognostic value of circulating microRNAs on heart failure-related morbidity and mortality in two large diverse cohorts of general heart failure patients. 2018; 20(1): 67-75. doi: 10.1002/ejhf.984.
  25. Van Boven N., Kardys I., Van Vark L.C. et al. Serially measured circulating microRNAs and adverse clinical outcomes in patients with acute heart failure. Eur J Heart Fail. 2018; 20(1): 89-96. doi: 10.1002/ejhf.950.
  26. Watson C.J., Gupta S.K., O'Connell E. et al. MicroRNA signatures differentiate preserved from reduced ejection fraction heart failure. Eur J Heart Fail. 2015; 17(4): 405-15. doi: 10.1002/ejhf.244.
  27. Akat K.M., Moore-McGriff D., Morozov P. et al.Comparative RNA-sequencing analysis of myocardial and circulating small RNAs in human heart failure and their utility as biomarkers. Proc Natl Acad Sci U S A. 2014; 111(30): 11151-56. doi: 10.1073/pnas.1401724111.
  28. Gidlof O., Smith J.G., Miyazu K. et al. Circulating cardio-enriched microRNAs are associated with long-term prognosis following myocardial infarction. BMC Cardiovasc Disord. 2013; 13: 12. doi: 10.1186/1471-2261-13-12.
  29. Marfella R., Di Filippo C., Potenza N. et al. Circulating microRNA changes in heart failure patients treated with cardiac resynchronization therapy: responders vs. non-responders. Eur J Heart Fail. 2013; 15(11): 1277-88. doi: 10.1093/eurjhf/hft088.
  30. Xiao J., Gao R., Bei Y. et al. Circulating miR-30d predicts survival in patients with acute heart failure. Cell Physiol Biochem. 2017; 41(3): 865-74. doi: 10.1159/000459899.
  31. Melman Y.F., Shah R., Danielson K. et al. Circulating microRNA-30d is associated with response to cardiac resynchronization therapy in heart failure and regulates cardiomyocyte apoptosis: A translational pilot study. Circulation. 2015; 131(25): 2202-16. doi: 10.1161/CIRCULATIONAHA.114.013220.
  32. Wang T., Cai Z., Hong G. et al. MicroRNA-21 increases cell viability and suppresses cellular apoptosis in non-small cell lung cancer by regulating the PI3K/Akt signaling pathway [retracted in: Mol Med Rep. 2021;23(2): 119]. Mol Med Rep. 2017; 16(5): 6506-11. doi: 10.3892/mmr.2017.7440.
  33. Zhang M., Cheng Y.J., Sara J.D. et al. Circulating microRNA-145 is associated with acute myocardial infarction and heart failure. Chin Med J (Engl). 2017; 130(1): 51-56. doi: 10.4103/0366-6999.196573.
  34. Scrutinio D., Conserva F., Passantino A. et al. Circulating microRNA-150-5p as a novel biomarker for advanced heart failure: A genome-wide prospective study. J Heart Lung Transplant. 2017; 36(6): 616-24. doi: 10.1016/j.healun.2017.02.008.
  35. Liu X., Tong Z., Chen K. et al. The Role of miRNA-132 against apoptosis and oxidative stress in heart failure. Biomed Res Int. 2018; 2018: 3452748. doi: 10.1155/2018/3452748.
  36. Masson S., Batkai S., Beermann J. et al. Circulating microRNA-132 levels improve risk prediction for heart failure hospitalization in patients with chronic heart failure. Eur J Heart Fail. 2018; 20(1): 78-85. doi: 10.1002/ejhf.961.
  37. Chen F., Yang J., Li Y., Wang H. Circulating microRNAs as novel biomarkers for heart failure. Hellenic J Cardiol. 2018; 59(4): 209-14. doi: 10.1016/j.hjc.2017.10.002.
  38. Zhang B., Li B., Qin F. et al. Expression of serum microRNA-155 and its clinical importance in patients with heart failure after myocardial infarction. J Int Med Res. 2019; 47(12): 6294-302. doi: 10.1177/0300060519882583.
  39. Zhang L., Xu R.L., Liu S.X. et al. Diagnostic value of circulating microRNA-19b in heart failure. Eur J Clin Invest. 2020; 50(11): e13308. doi: 10.1111/eci.13308.
  40. D'Alessandra Y., Chiesa M., Carena M.C. et al. Differential role of circulating microRNAs to track progression and pre-symptomatic stage of chronic heart failure: A pilot study. Biomedicines. 2020; 8(12): 597. doi: 10.3390/biomedicines8120597.
  41. Liu J., Zhang H., Li X. et al. Diagnostic and prognostic significance of aberrant miR-652-3p levels in patients with acute decompensated heart failure and acute kidney injury. J Int Med Res. 2020; 48(11): 300060520967829. doi: 10.1177/0300060520967829.
  42. Li J., Salvador A.M., Li G. et al. Mir-30d Regulates Cardiac Remodeling by Intracellular and Paracrine Signaling. Circ Res. 2021; 128(1): e1-e23. doi: 10.1161/CIRCRESAHA.120.317244.
  43. Li D.M., Li B.X., Yang L.J. et al. Diagnostic value of circulating microRNA-208a in differentiation of preserved from reduced ejection fraction heart failure. Heart Lung. 2021; 50(1): 71-74. doi: 10.1016/j.hrtlng.2020.07.010.
  44. Spinka G., Bartko P.E., Pavo N. et al. Secondary mitral regurgitation-Insights from microRNA assessment. Eur J Clin Invest. 2021; 51(2): e13381. doi: 10.1111/eci.13381.
  45. Brundin M., Wagsater D., Alehagen U., Carlhall C.J. Circulating microRNA-29-5p can add to the discrimination between dilated cardiomyopathy and ischaemic heart disease. ESC Heart Fail. 2021; 8(5): 3865-74. doi: 10.1002/ehf2.13458.
  46. Nemcekova V., Kmecova Z., Bies Pivackova L. et al. Hematocrit-related alterations of circulating microRNA-21 levels in heart failure patients with reduced ejection fraction: A preliminary study. Genet Test Mol Biomarkers. 2021; 25(4): 302-06. doi: 10.1089/gtmb.2020.0277.
  47. Jin Y., Wei S., Yao L. Diagnostic performance of miR-214, BNP, NT-proBNP and soluble ST2 in acute heart failure.Int J Clin Pract. 2021; 75(10): e14643. doi: 10.1111/ijcp.14643.
  48. Aleshcheva G., Pietsch H., Escher F., Schultheiss H.P. MicroRNA profiling as a novel diagnostic tool for identification of patients with inflammatory and/or virally induced cardiomyopathies. ESC Heart Fail. 2021; 8(1): 408-22. doi: 10.1002/ehf2.13090.
  49. Galluzzo A., Gallo S., Pardini B. et al. Identification of novel circulating microRNAs in advanced heart failure by next-generation sequencing. ESC Heart Fail. 2021; 4: 2907-19. doi: 10.1002/ehf2.13371.
  50. Gevaert A.B., Witvrouwen I., Van Craenenbroeck A.H. et al.; OptimEx-Clin Study Group. MiR-181c level predicts response to exercise training in patients with heart failure and preserved ejection fraction: an analysis of the OptimEx-Clin trial. Eur J Prev Cardiol. 2021: zwab151. doi: 10.1093/eurjpc/zwab151. Epub ahead of print.
  51. Witvrouwen I., Gevaert A.B., Possemiers N. et al. Circulating microRNA as predictors for exercise response in heart failure with reduced ejection fraction. Eur J Prev Cardiol. 2021: zwaa142. doi: 10.1093/eurjpc/zwaa142. Epub ahead of print.
  52. Taubel J., Hauke W., Rump S. et al. Novel antisense therapy targeting microRNA-132 in patients with heart failure: Results of a first-inhuman Phase 1b randomized, double-blind, placebo-controlled study. Eur Heart J. 2021; 42(2): 178-88. doi: 10.1093/eurheartj/ehaa898.
  53. Алиева А.М., Резник Е.В., Гасанова Э.Т. с соавт. Клиническое значение определения биомаркеров крови у больных с хронической сердечной недостаточностью. Архивъ внутренней медицины. 2018; 5: 333-345
  54. Алиева А.М., Пинчук Т.В., Алмазова И.И. с соавт. Клиническое значение определения биомаркера крови ST2 у больных с хронической сердечной недостаточностью. Consilium Medicum. 2021; 6: 522-526
  55. Алиева А.М., Алмазова И.И., Пинчук Т.В. с соавт. Фракталкин и сердечно-сосудистые заболевания. Consilium Medicum. 2020; 5: 83-86
  56. Jones K.J., Searles C.D. Development of MicroRNA-Based Therapeutics for Vascular Disease. Circ Res. 2020; 127(9): 1179-81. doi: 10.1161/CIRCRESAHA.120.317999.
  57. Shaker F., Nikravesh A., Arezumand R., Aghaee-Bakhtiari S.H. Web-based tools for miRNA studies analysis.Comput Biol Med. 2020; 127:104060. doi: 10.1016/j.compbiomed.2020.104060.

Supplementary files

Supplementary Files
Action
1. JATS XML

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies