INTERLEUKIN 37 IS A NEW BIOLOGICAL MARKER FOR CARDIOVACULAR PATHOLOGY


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Currently, a large number of new biological markers have been studied that could serve as a laboratory tool for diagnosing and predicting the course of cardiovascular diseases, but only a few of them have found application in the real practice of clinicians. Altered expression of interleukin 37 in serum has been found in patients with various diseases. In recent years, the interest of scientists has been focused on the role of interleukin-37 in cardiovascular pathology. The final confirmation of the diagnostic, predictive and possibly therapeutic role of this marker will be obtained as a result of future large-scale prospective studies.

Full Text

Restricted Access

About the authors

Amina Magomedovna Alieva

N.I. Pirogov Russian National Research Medical University of the Ministry of Healthcare of Russia

Email: amisha_alieva@mail.ru
PhD in Medicine, associate professor of the Department of hospital therapy No. 2 of the Faculty of general medicine 117997, Moscow, 1 Ostrovityanova Str

Elena V. Reznik

N.I. Pirogov Russian National Research Medical University of the Ministry of Healthcare of Russia

Email: elenaresnik@gmail.com
Dr. med. habil, professor, head of the Department of propaedeutics of internal diseases of the Faculty of general medicine 117997, Moscow, 1 Ostrovityanova Str

Natalia V. Teplova

N.I. Pirogov Russian National Research Medical University of the Ministry of Healthcare of Russia

Dr. med. habil, professor, head of the Department of clinical pharmacology of the Faculty of general medicine 117997, Moscow, 1 Ostrovityanova Str

Rosa A. Arakelyan

N.I. Pirogov Russian National Research Medical University of the Ministry of Healthcare of Russia

Email: sharm@yandex.ru
student at the Faculty of general medicine 117997, Moscow, 1 Ostrovityanova Str

Lidia M. Shnakhova

I.M. Sechenov First Moscow State Medical University of the Ministry of Healthcare of Russia

Email: shnakhova_l_m@staff.sechenov.ru
doctor

Irina E. Baykova

N.I. Pirogov Russian National Research Medical University of the Ministry of Healthcare of Russia

Email: 1498553@mail.ru
PhD in Medicine, associate professor of the Department of hospital therapy No. 2 of the Faculty of general medicine 117997, Moscow, 1 Ostrovityanova Str

Mariana A. Akkieva

Center of Allergology and Immunology of the Ministry of Healthcare of the Kabardino-Balkarian Republic

Email: marakkieva@mail.ru
deputy chief physician for clinical and expert work of Center of Allergology and Immunology of the Ministry of Healthcare 360010, Nalchik, 10а Marko Vovchok Str

Igor G. Nikitin

N.I. Pirogov Russian National Research Medical University of the Ministry of Healthcare of Russia

Email: igor.nikitin.64@mail.ru
Dr. med. habil, professor, head of the Department of hospital therapy No. 2 of the Faculty of general medicine 117997, Moscow, 1 Ostrovityanova Str

References

  1. Boorsma E., Ter Maaten J., Damman K. et al. Congestion in heart failure: a contemporary look at physiology, diagnosis and treatment. Nat Rev Cardiol. 2020; 17(10): 641-55. https://dx.doi.org/10.1038/s41569-020-0379-7.
  2. Алиева А.М., Резник Е.В., Гасанова Э.Т. с соавт. Клиническое значение определения биомаркеров крови у больных с хронической сердечной недостаточностью. Архивъ внутренней медицины. 2018; 5: 333-345. https://dx.doi.org/10.20514/2226-6704-2018-8-5-333-345.
  3. Su Z., Tao X. Current understanding of IL-37 in human health and disease. Front Immunol. 2021; 12: 696605. https://dx.doi.org/10.3389/fimmu.2021.696605.
  4. Mei Y., Liu H. IL-37: An anti-inflammatory cytokine with antitumor functions. Cancer Rep (Hoboken). 2019; 2(2): e1151. https://dx.doi.org/10.1002/cnr2.1151.
  5. Wang L., Quan Y., Yue Y. et al.Interleukin-37: A crucial cytokine with multiple roles in disease and potentially clinical therapy. Oncol Lett. 2018; 15(4): 4711-19. https://dx.doi.org/10.3892/ol.2018.7982.
  6. Jia H., Liu J., Han B. Reviews of interleukin-37: Functions, receptors, and roles in diseases. Biomed Res Int. 2018; 2018: 3058640. https://dx.doi.org/10.1155/2018/3058640.
  7. Boraschi D., Lucchesi D., Hainzl S. et al. IL-37: a new anti-inflammatory cytokine of the IL-1 family. Eur Cytokine Netw. 2011; 22(3): 127-47. https://dx.doi.org/10.1684/ecn.2011.0288.
  8. Bulau A., Nold M.F., Li S. et al. Role of caspase-1 in nuclear translocation of IL-37, release of the cytokine, and IL-37 inhibition of innate immune responses. Proc Natl Acad Sci U S A. 2014; 111(7): 2650-55. https://dx.doi.org/10.1073/107pnas.1324140111.
  9. Supino D., Minute L., Mariancini A. et al. Negative regulation of the IL-1 system by IL-1R2 and IL-1R8: Relevance in pathophysiology and disease. Front Immunol. 2022; 13: 804641. https://dx.doi.org/10.3389/fimmu.2022.804641.
  10. Zhu R., Zhang F., Pan C. et al. Role of IL-37- and IL-37-treated dendritic cells in acute coronary syndrome. Oxid Med Cell Longev. 2021; 2021: 6454177. https://dx.doi.org/10.1155/2021/6454177.
  11. Dinarello C.A., Bufler P.Interleukin-37. Semin Immunol. 2013; 25(6): 466-68. https://dx.doi.org/10.1016/j.smim.2013.10.004.
  12. Chen H., Fujita M. IL-37: A new player in immune tolerance. Cytokine. 2015; 72(1): 113-14. https://dx.doi.org/10.1016/j.cyto.2014.11.025.
  13. Li S., Neff C., Barber K. et al. Extracellular forms of IL-37 inhibit innate inflammation in vitro and in vivo but require the IL-1 family decoy receptor IL-1R8. Proc Natl Acad Sci U S A. 2015; 112(8): 2497-502. https://dx.doi.org/10.1073/pnas.1424626112.
  14. Sharma S., Kulk N., Nold M.F. et al. The IL-1 family member 7b translocates to the nucleus and down-regulates proinflammatory cytokines. J Immunol. 2008; 180(8): 5477-82. https://dx.doi.org/10.4049/jimmunol.180.8.5477.
  15. Patel F.J., Volkmann D.T., Taylor G.W. et al. Retracted: IL-37 reduces inflammatory response after cerebral ischemia and reperfusion injury through down-regulation of pro-inflammatory cytokines. Cytokine. 2014; 69(2): 234-39. https://dx.doi.org/10.1016/j.cyto.2014.06.011.
  16. Yu K., Min X., Lin Y. et al. Increased IL-37 concentrations in patients with arterial calcification. Clin Chim Acta. 2016; 461: 19-24. https://dx.doi.org/10.10167j.cca.2016.07.011.
  17. Wennerberg E., Spada S., Rudqvist N.P. et al. CD73 blockade promotes dendritic cell infiltration of irradiated tumors and tumor rejection. Cancer Immunol Res. 2020; 8(4): 465-78. https://dx.doi.org/10.1158/2326-6066.CIR-19-0449.
  18. Nold M.F., Nold-Petry C.A., Zepp J.A. et al. IL-37 is a fundamental inhibitor of innate immunity. Nat Immunol. 2010; 11(11): 1014-22. https://dx.doi.org/10.1038/ni.1944.
  19. Nold-Petry C.A., Lo C.Y., Rudloff I. et al. IL-37 requires the receptors IL-18Ra and IL-1R8 (SIGIRR) to carry out its multifaceted anti-inflammatory program upon innate signal transduction. Nat Immunol. 2015; 16(4): 354-65. https://dx.doi.org/10.1038/ni.3103.
  20. Melillo J.A., Song L., Bhagat G. et al. Dendritic cell (DC)-specific targeting reveals Stat3 as a negative regulator of DC function. J Immunol. 2010; 184(5): 2638-45. https://dx.doi.org/10.4049/jimmunol.0902960.
  21. Wang N., Liang H., Zen K. Molecular mechanisms that influence the macrophage M1-M2 polarization balance. Front Immunol. 2014; 5: 614. https://dx.doi.org/10.3389/fimmu.2014.00614.
  22. Heindl M., Handel N., Ngeow J. et al. Autoimmunity, intestinal lymphoid hyperplasia, and defects in mucosal B-cell homeostasis in patients with PTEN hamartoma tumor syndrome. Gastroenterology. 2012; 142(5): 1093-96e6. https://dx.doi.org/10.1053/j.gastro.2012.01.011.
  23. Zhu Y., Qin H., Ye K. et al. Dual role of IL-37 in the progression of tumors. Cytokine. 2022; 150: 155760. https://dx.doi.org/10.1016/j.cyto.2021.155760.
  24. Lunding L., Webering S., Vock C. et al. IL-37 requires IL-18Ra and SIGIRR/IL-1R8 to diminish allergic airway inflammation in mice. Allergy. 2015; 70(4): 366-73. https://dx.doi.org/10.1111/all.12566.
  25. Moretti S., Bozza S., Oikonomou V. et al. IL-37 inhibits inflammasome activation and disease severity in murine aspergillosis. PLoS Pathog. 2014; 10(11): e1004462. https://dx.doi.org/10.1371/journal.ppat.1004462.
  26. Henry C., Casas-Selves M., Kim J. et al. Aging-associated inflammation promotes selection for adaptive oncogenic events in B cell progenitors. J Clin Invest. 2015; 125(12): 4666-80. https://dx.doi.org/10.1172/JCI83024.
  27. Bulau A., Fink M., Maucksch C. et al. In vivo expression of interleukin-37 reduces local and systemic inflammation in concanavalin A-induced hepatitis. Sci World J. 2011; 11: 2480-90. https://dx.doi.org/10.1100/2011/968479.
  28. Davis C., Zielinski M., Dunbrasky D. et al.Interleukin 37 expression in mice alters sleep responses to inflammatory agents and influenza virus infection. Neurobiol Sleep Circadian Rhythm. 2017; 3: 1-9. https://dx.doi.org/10.1016/j.nbscr.2016.11.005.
  29. Cavalli G., Dinarello C.A. Suppression of inflammation and acquired immunity by IL-37. Immunol Rev. 2018; 281(1): 179-90. https://dx.doi.org/10.1111/imr.12605.
  30. Yousif N.G., Li J., Yousif F. et al. Expression of IL-37 in mouse protects the myocardium against ischemic injury via modulation of NF-kB activation. Circulation. 2011; 124(Suppl 21): A8603.
  31. Coll-Miro M., Francos-Quijorna I., Santos-Nogueira E. et al. Beneficial effects of IL-37 after spinal cord injury in mice. Proc Natl Acad Sci U S A. 2016; 113(5): 1411-16. https://dx.doi.org/10.1073/pnas.1523212113.
  32. Yang Y., Zhang Z.X., Lian D. et al. IL-37 inhibits IL-18-induced tubular epithelial cell expression of pro-inflammatory cytokines and renal ischemia-reperfusion injury. Kidney Int. 2015; 87(2): 396-408. https://dx.doi.org/10.1038/ki.2014.295.
  33. Ballak D.B., van Diepen J.A., Moschen A.R. et al. IL-37 protects against obesity-induced inflammation and insulin resistance. Nat Commun. 2014; 5: 4711. https://dx.doi.org/10.1038/ncomms5711.
  34. Ballak D., Li S., Johnson L.C. et al. Therapeutic oprions for interleukin-37 in metabolic and inflamm-aging diseases. Gerontologist. 2015; 55(suppl 2): 62.
  35. Luo Y., Cai X., Liu S. et al. Suppression of antigen-specific adaptive immunity by IL-37 via induction of tolerogenic dendritic cells. Proc Natl Acad Sci U S A. 2014; 111(42): 15178-83. https://dx.doi.org/10.1073/pnas.1416714111.
  36. Shuai X., Wei-min L., Tong Y.L. et al. Expression of IL-37 contributes to the immunosuppressive property of human CD4+CD25+ regulatory T cells. Sci Rep. 2015; 5: 14478. https://dx.doi.org/10.1038/srep14478.
  37. Alagbe A., Domingos I., Adekile A. et al. Anti-inflammatory cytokines in sickle cell disease. Mol Biol Rep. 2022; 49(3): 2433-42. https://dx.doi.org/10.1007/s11033-021-07009-1.
  38. Chai M., Ji Q., Zhang H. et al. The protective effect of interleukin-37 on vascular calcification and atherosclerosis in apolipoprotein E-deficient mice with diabetes. J Interferon Cytokine Res. 2015; 35(7): 530-39. https://dx.doi.org/10.1089/jir.2014.0212.
  39. Xu D., Wang A., Jiang F. et al. Effects of interleukin-37 on cardiac function after myocardial infarction in mice.Int J Clin Exp Pathol. 2015; 8:5247-51.
  40. Li J., Zhai Y., Ao L. et al.Interleukin-37 suppresses the inflammatory response to protect cardiac function in old endotoxemic mice. Cytokine. 2017; 95: 55-63. https://dx.doi.org/10.1016/j.cyto.2017.02.008.
  41. Wu B., Meng K., Ji Q. et al.Interleukin-37 ameliorates myocardial ischaemia/reperfusion injury in mice. Clin Exp Immunol. 2014; 176(3): 438-51. https://dx.doi.org/10.1111/cei.12284.
  42. Wang X., Cai X., Chen L. et al. The evaluation of plasma and leukocytic IL-37 expression in early inflammation in patients with acute ST-segment elevation myocardial infarction after PCI. Mediators Inflamm. 2015; 2015: 6. https://dx.doi.org/10.1155/2015/626934.626934.
  43. Ji Q., Zeng Q., Huang Y. et al. Elevated plasma IL-37, IL-18, and IL-18BP concentrations in patients with acute coronary syndrome. Mediators Inflamm. 2014; 2014: 9. https://dx.doi.org/10.1155/2014/165742.165742.
  44. Liu C., Cui Y., Zhang D. et al. Analysis of serum interleukin-37 level and prognosis in patients with ACS.Comput Math Methods Med. 2021; 2021: 3755458. https://dx.doi.org/10.1155/2021/3755458.
  45. Liu K., Tang Q., Zhu X., Yang X. IL-37 increased in patients with acute coronary syndrome and associated with a worse clinical outcome after ST-segment elevation acute myocardial infarction. Clin Chim Acta. 2017; 468: 140-44. https://dx.doi.org/10.1016/j.cca.2017.02.017.
  46. Yang T., Fang F., Chen Y. et al. Elevated plasma interleukin-37 playing an important role in acute coronary syndrome through suppression of ROCK activation. Oncotarget. 2017; 8(6): 9686-95. https://dx.doi.org/10.18632/oncotarget.14195.
  47. Ye J., Wang Y., Wang Z. et al. Circulating IL-37 levels are elevated in patients with hypertension. Exp Ther Med. 2021; 21(6): 558. https://dx.doi.org/10.3892/etm.2021.9990.
  48. Shou X., Lin J., Xie C. et al. Plasma IL-37 elevated in patients with chronic heart failure and predicted major adverse cardiac events: A 1-year follow-up study. Dis Markers. 2017; 2017: 9134079. https://dx.doi.org/10.1155/2017/9134079.
  49. Mayoux M., Roller A., Pulko V. et al. Dendritic cells dictate responses to PD-L1 blockade cancer immunotherapy. Sci Transl Med. 2020; 12(534): eaav7431. https://dx.doi.org/10.1126/scitranslmed. aav7431.
  50. Wculek S.K., Cueto F.J., Mujal A.M. et al. Dendritic cells in cancer immunology and immunotherapy. Nat Rev Immunol. 2020; 20(1): 7-24. https://dx.doi.org/10.1038/s41577-019-0210-z.
  51. Cifuentes-Rius A., Desai A., Yuen D. et al. Inducing immune tolerance with dendritic cell-targeting nanomedicines. Nat Nanotechnol. 2021; 16(1): 37-46. https://dx.doi.org/10.1038/s41565-020-00810-2.
  52. Castenmiller C., Keumatio-Doungtsop B.C., van Ree R. et al. Tolerogenic immunotherapy: Targeting DC surface receptors to induce antigen-specific tolerance. Front Immunol. 2021; 12: 643240. https://dx.doi.org/10.3389/fimmu.2021.643240.
  53. Lanzavecchia A., Sallusto F. The instructive role of dendritic cells on T cell responses: Lineages, plasticity and kinetics. Curr Opin Immunol. 2001; 13(3): 291-98. https://dx.doi.org/10.1016/s0952-7915(00)00218-1.
  54. Jauregui-Amezaga A., Cabezon R., Ramirez-Morros A. et al.Intraperitoneal administration of autologous tolerogenic dendritic cells for refractory Crohn's disease: A phase I study. J Crohns Colitis. 2015; 9(12): 1071-78. https://dx.doi.org/10.1093/ecco-jcc/jjv144.
  55. Bell G., Anderson A., Diboll J. et al. Autologous tolerogenic dendritic cells for rheumatoid and inflammatory arthritis. Ann Rheum Dis. 2017; 76(1): 227-34. https://dx.doi.org/10.1136/annrheumdis-2015-208456.
  56. Zhu R., Sun H., Yu K. et al.Interleukin-37 and dendritic cells treated with interleukin-37 plus troponin I ameliorate cardiac remodeling after myocardial infarction. J Am Heart Assoc. 2016; 5(12): e004406. https://dx.doi.org/10.1161/JAHA.116.004406.
  57. Mao X., Zhu R., Zhang F. et al. IL-37 plays a beneficial role in patients with acute coronary syndrome. Mediators Inflamm. 2019; 2019: 9515346. https://dx.doi.org/10.1155/2019/9515346.
  58. Шиловский И.П., Дынева М.Е., Курбачева О.М. c соавт. Роль интерлейкина-37 в патогенезе аллергических заболеваний. ACTA NATURAE. 2019; 4: 54-64. https://dx.doi.org/10.32607/20758251-2019-11-4-54-64.
  59. Yang Z., Kang L., Wang Y. et al. Role of IL-37 in cardiovascular disease inflammation. Can J Cardiol. 2019; 35(7): 923-30. https://dx.doi.org/10.1016/j.cjca.2019.04.007.

Supplementary files

Supplementary Files
Action
1. JATS XML

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies