Liver and biliary tract damage induced by SARS-CoV-2 coronavirus infection


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅或者付费存取

详细

Due to high expression of ACE2 receptors in cholangiocytes liver and biliary tract are playing role of potential targets for SARS-CoV-2 virus. Coronavirus infection impairs the barrier function of cholangiocytes by dysregulating genes involved in dense contact formation and bile acids transporting. Liver damage in patients with COVID-19 can result from direct damage to cholangiocytes and subsequent accumulation of bile acids, as well as from a systemic inflammatory response, or from drug toxicity. Real clinical practice suggests a combined hepatic and biliary tract involvement in COVID-19 by all possible pathogenetic mechanisms. According to current approaches the presence of such a damage calls for ursodeoxycholic acid therapy methodic for cholangitis type.

全文:

受限制的访问

作者简介

Sergei Vyalov

Clinic «Lancet» of the Institute of Plastic Surgery and Cosmetology JSC

PhD in Medicine, associate professor, head of the Department of gastroenterology

Anastasia Gilyuk

Clinic «Lancet» of the Institute of Plastic Surgery and Cosmetology JSC

gastroenterologist

参考

  1. Guo Y.R., Cao Q.D., Hong Z.S. et al. The origin, transmission and clinical therapies on coronavirus disease 2019 (COVID-19) outbreak -an update on the status. Mil Med Res. 2020; 7(1): 11. https://dx.doi.org/10.1186/s40779-020-00240-0.
  2. World Health Organization. Naming the coronavirus disease (COVID-19) and the virus that causes. URL: https://www.who.int/emergencies/diseases/novel-coronavirus-2019/technical-guidance/naming-the-coronavirus-disease-(covid-2019)-and-the-virus-that-causes-it#:~:text=ICTV%20announced%20%E2%80%9Csevere%20acute%20respiratory,the%20S-ARS%20outbreak%20of%202003 (date of access - 01.08.2022).
  3. Wong S.H., Lui R.N., Sung J.J. COVID-19 and the digestive system. J. Gastroenterol Hepatol. 2020; 35(5): 744-48. https://dx.doi.org/10.1111/jgh.15047.
  4. Jothimani D., Venugopal R., Abedin M.F. et al. COVID-19 and the liver. J. Hepatol. 2020; 73(5): 1231-40. https://dx.doi.org/10.1016/j.jhep.2020.06.006.
  5. Buruk K., Ozlu T. New Coronavirus: SARS-COV-2. Mucosa. 2020; 3(1): 1-4. https://dx.doi.org/10.33204/mucosa.706906.
  6. Jin X., Lian J., Hu J. Epidemiological, clinical and virological characteristics of 74 cases of corona-virus-infected disease 2019 (COVID-19) with gastrointestinal symptoms. Gut. 2020; 69(6): 1002-9. https://dx.doi.org/10.1136/gutjnl-2020-320926.
  7. Su S., Shen J., Zhu L.et al. Involvement of digestive system in COVID-19: Manifestations, pathology, management and challenges. Therap Adv Gastroenterol. 2020; 13: 1756284820934626. https://dx.doi.org/10.1177/1756284820934626.
  8. Tian Y., Rong L., Nian W., He Y. Review article: Gastrointestinal features in COVID-19 and the possibility of faecal transmission. Aliment Pharmacol Ther. 2020; 51(9): 843-51. https://dx.doi.org/10.1111/apt.15731.
  9. Musa S. Hepatic and gastrointestinal involvement in coronavirus disease 2019 (COVID-19): What do we know till now? Arab J. Gastroenterol. 2020; 21(1): 3-8. https://dx.doi.org/10.1016/j.ajg.2020.03.002.
  10. Hamming I., Timens W., Bulthuis M.L. et al. Tissue distribution of ACE2 protein, the functional receptor for SARS coronavirus. A first step in understanding SARS pathogenesis. J. Pathol. 2004; 203(2): 631-37. https://dx.doi.org/10.1002/path.1570.
  11. Tian Y., Rong L., Nian W., He Y. Review article: Gastrointestinal features in COVID-19 and the possibility of faecal transmission. Aliment Pharmacol Ther. 2020; 51(9): 843-51. https://dx.doi.org/10.1111/apt.15731.
  12. Mehta P., McAuley D.F., Brown M. et al. COVID-19: Consider cytokine storm syndromes and immunosuppression. Lancet. 2020; 395(10229): 1033-34. https://dx.doi.org/10.1016/S0140-6736(20)30628-0.
  13. Neurath M.F. COVID-19 and immunomodulation in IBD. Gut. 2020; 69(7): 1335-42. https://dx.doi.org/10.1136/gutjnl-2020-321269.
  14. Zhang C., Shi L., Wang F.S. Liver injury in COVID-19: Management and challenges. Lancet Gastroenterol Hepatol. 2020; 5(5): 428-30. https://dx.doi.org/10.1016/S2468-1253(20)30057-1.
  15. Lei H.Y., Ding Y.H., Nie K. et al. Potential effects of SARS-CoV-2 on the gastrointestinal tract and liver. Biomed Pharmacother. 2021; 133: 111064. https://dx.doi.org/10.1016/j.biopha.2020.111064.
  16. Kukla M., Skonieczna-Zydecka K., Kotfis K. et al. COVID-19, MERS and SARS with concomitant liver injury-systematic review of the existing literature. J. Clin Med. 2020; 9(5): 1420. https://dx.doi.org/10.3390/jcm9051420.
  17. Xu L., Liu J., Lu M. et al. Liver injury during highly pathogenic human coronavirus infections. Liver Int. 2020; 40(5): 998-1004. https://dx.doi.org/10.1111/liv.14435.
  18. Ji D., Qin E., Xu J. et al. Non-alcoholic fatty liver diseases in patients with COVID-19: A retrospective study. J. Hepatol. 2020; 73(2): 451-53. https://dx.doi.org/10.1016/j.jhep.2020.03.044.
  19. Wang Y., Liu S., Liu H. et al. SARS-CoV-2 infection of the liver directly contributes to hepatic impairment in patients with COVID-19. J. Hepatol. 2020; 73(4): 807-16. https://dx.doi.org/10.1016/j.jhep.2020.05.002.
  20. Kucharski A.J., Russell T.W., Diamond C. et al. Early dynamics of transmission and control of COVID-19: A mathematical modelling study. Lancet Infect Dis. 2020; 20(5): 553-58. https://dx.doi.org/10.1016/S1473-3099(20)30144-4.
  21. Huang C., Wang Y., Li X. et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020; 395(10223): 497-506. https://dx.doi.org/10.1016/S0140-6736(20)30183-5.
  22. Chen N., Zhou M., Dong X. et al. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: A descriptive study. Lancet. 2020; 395(10223): 507-13. https://dx.doi.org/10.1016/S0140-6736(20)30211-7.
  23. Kulkarni A.V., Kumar P., Tevethia H.V. et al. Systematic review with meta-analysis: liver manifestations and outcomes in COVID-19. Aliment Pharmacol Ther. 2020; 52(4): 584-99. https://dx.doi.org/10.1111/apt.15916.
  24. Yadav D.K., Singh A., Zhang Q. et al. Involvement of liver in COVID-19: Systematic review and meta-analysis. Gut. 2021; 70(4): 807-9. https://dx.doi.org/10.1136/gutjnl-2020-322072.
  25. Kumar-M.P., Mishra S., Jha D.K. et al. Coronavirus disease (COVID-19) and the liver: A comprehensive systematic review and metaanalysis. Hepatol Int. 2020; 14(5): 711-22. https://dx.doi.org/10.1007/s12072-020-10071-9.
  26. Fiel M.I., El Jamal S.M., Paniz-Mondolfi A. et al. Findings of hepatic severe acute respiratory syndrome coronavirus-2 infection. Cell Mol Gastroenterol Hepatol. 2021; 11(3): 763-70. https://dx.doi.org/10.1016/j.jcmgh.2020.09.015.
  27. Parasa S., Desai M., Chandrasekar V.T. et al. Prevalence of gastrointestinal symptoms and fecal viral shedding in patients with coronavirus disease 2019: A systematic review and meta-analysis. JAMA Netw Open. 2020; 3(6): e2011335. https://dx.doi.org/10.1001/jamanetworkopen.2020.11335.
  28. Guan W., Ni Z.Y., Hu Y. et al. Clinical characteristics of coronavirus disease 2019 in China. N. Engl J. Med. 2020; 382(18): 1708-20. https://dx.doi.org/10.1056/NEJMoa2002032.
  29. Cai Q., Huang D., Yu H. et al. COVID-19: Abnormal liver function tests. J. Hepatol. 2020; 73(3): 566-574. https://dx.doi.org/10.1016/j.jhep.2020.04.006.
  30. Bernal-Monterde V., Casas-Deza D., Letona-Gimenez L., et al. SARS-CoV-2 infection induces a dual response in liver function tests: Association with mortality during hospitalization. 2020; 8(9): 328. https://dx.doi.org/10.3390/biomedicines8090328.
  31. Varga Z., Flammer A.J., Steiger P. et al. Endothelial cell infection and endotheliitis in COVID-19. The Lancet. 2020; 395(10234): 1417-18. https://dx.doi.org/10.1016/S0140-6736(20)30937-5.
  32. Sonzogni A., Previtali G., Seghezzi M. et al. Liver histopathology in severe COVID 19 respiratory failure is suggestive of vascular alterations. Liver Int. 2020; 40(9): 2110-16. https://dx.doi.org/10.1111/liv.14601.
  33. Chappell J.D., Dermody T.S. Biology of viruses and viral diseases. In: Bennet J.E., Dolin R., Blase M.J. Mandell, Douglas, and Bennett's principles and practice of infectious diseases. Vol. 2. Elsevier Inc. 2014; 1681-93.e4. ISBN-10: 0323482554; ISBN-13: 9780323482554.
  34. Paizis G., Tikellis C., Cooper M.E. et al. Chronic liver injury in rats and humans upregulates the novel enzyme angiotensin converting enzyme 2. Gut. 2005; 54(12): 1790-96. https://dx.doi.org/10.1136/gut.2004.062398.
  35. Huang Q., Xie Q., Shi C.C. et al. Expression of angiotensin-converting enzyme 2 in CCL4-induced rat liver fibrosis. Int J. Mol Med. 2009; 23(6): 717-23. https://dx.doi.org/10.3892/ijmm_00000185.
  36. Suarez-Farinas M., Tokuyama M., Wei G. et al. Intestinal inflammation modulates the expression of ACE2 and TMPRSS2 and potentially overlaps with the pathogenesis of SARS-CoV-2 related disease. Gastroenterology. 2021; 160(1): 287-301.e20. https://dx.doi.org/10.1053/j.gastro.2020.09.029.
  37. Gkogkou E., Barnasas G., Vougas K., Trougakos I.P. Expression profiling meta-analysis of ACE2 and TMPRSS2, the putative antiinflammatory receptor and priming protease of SARS-CoV-2 in human cells, and identification of putative modulators. Redox Biol. 2020; 36: 101615. https://dx.doi.org/10.1016/j.redox.2020.101615.
  38. Yang L., Han Y., Nilsson-Payant B.E. et al. A human pluripotent stem cell-based platform to study SARS-CoV-2 tropism and model virus infection in human cells and organoids. Cell Stem Cell. 2020; 27(1): 125-36.e7. https://dx.doi.org/10.1016/j.stem.2020.06.015.
  39. Zhao B., Ni C., Gao R. et al. Recapitulation of SARS-CoV-2 infection and cholangiocyte damage with human liver ductal organoids. Protein and Cell. 2020; 11(10): 771-75. https://dx.doi.org/10.1007/s13238-020-00718-6.
  40. Chai X., Hu L., Zhang Y. et al. Specific ACE2 expression in cholangiocytes may cause liver damage after 2019-nCoV infection. bioRxiv. 2020. https://dx.doi.org/10.1101/2020.02.03.931766.
  41. Banales J.M., Huebert R.C., Karlsen T. et al. Cholangiocyte pathobiology. Nat Rev Gastroenterol Hepatol. 2019; 16(5): 269-81. https://dx.doi.org/10.1038/s41575-019-0125-y.
  42. Zhao B., Ni C., Gao R. et al. Recapitulation of SARS-CoV-2 infection and cholangiocyte damage with human liver ductal organoids. Protein and Cell. 2020; 11(10): 771-75. https://dx.doi.org/10.1007/s13238-020-00718-6.
  43. Lax S.F., Skok K., Zechner P. et al. Pulmonary arterial thrombosis in COVID-19 with fatal outcome: Results from a prospective, singlecenter clinicopathologic case series. Ann Intern Med. 2020; 173(5): 350-61. https://dx.doi.org/10.7326/M20-2566.
  44. Yokomuro S., Tsuji H., Lunz J.G. et al. Growth control of human biliary epithelial cells by interleukin 6, hepatocyte growth factor transforming growth factor 81, and activin A: Comparison of a cholan-giocarcinoma cell line with primary cultures of nonneoplastic biliary epithelial cells. Hepatology. 2000; 32(1): 26-35. https://dx.doi.org/10.1053/jhep.2000.8535.
  45. Fiorotto R., Spirli C., Fabris L. et al. Ursodeoxycholic acid stimulates cholangiocyte fluid secretion in mice via CFTR-dependent ATP secretion. Gastroenterology. 2007; 133(5): 1603-13. https://dx.doi.org/10.1053/j.gastro.2007.08.071.
  46. Beuers U., Trauner M., Jansen P., Poupon R. New paradigms in the treatment of hepatic cholestasis: From UDCA to FXR, PXR and beyond. J. Hepatol. 2015; 62(1 Suppl): S25-37. https://dx.doi.org/10.1016/j.jhep.2015.02.023.
  47. Fickert P., Hirschfield G.M., Denk G. et al. norUrsodeoxycholic acid improves cholestasis in primary sclerosing cholangitis. J. Hepatol. 2017; 67(3): 549-58. https://dx.doi.org/10.1016/j.jhep.2017.05.009.
  48. Jensen J.F., Thomsen T., Overgaard D. et al. Impact of follow-up consultations for ICU survivors on post-ICU syndrome: A systematic review and meta-analysis. Intensive Care Med. 2015; 41(5): 763-75. https://dx.doi.org/10.1007/s00134-015-3689-1.
  49. Wade D.T. Rehabilitation after COVID-19: An evidence-based approach. Clin Med (Lond). 2020; 20(4): 359-65. https://dx.doi.org/10.7861/clinmed.2020-0353.
  50. А.Г. Малявин, Т.В. Адашева, С.Л. Бабак с соавт. Медицинская реабилитация больных, перенесших COVID-19 инфекцию. Методические рекомендации. Терапия. 2020; 6(S5): 1-48. [MAlyavin A.G., Adasheva T.V., Babak S.L. et al. Medical rehabilitation of COVID-19-survived patients. Methodological recommendations. Terapiya = Therapy. 2020; 6(S5): 1-48 (In Russ.)]. https://dx.doi.org/10.18565/therapy.2020.5suppl.1-48. EDN: GWCSGE.
  51. Paumgartner G., Beuers U. Ursodeoxycholic acid in cholestatic liver disease: Mechanisms of action and therapeutic use revisited. Hepatology. 2002; 36(3): 525-31. https://dx.doi.org/10.1053/jhep.2002.36088.
  52. Маевская М.В., Надинская М.Ю., Луньков В.Д. с соавт. Влияние урсодезоксихолевой кислоты на воспаление, стеатоз и фиброз печени и факторы атерогенеза у больных неалкогольной жировой болезнью печени: результаты исследования УСПЕХ. Российский журнал гастроэнтерологии, гепатологии, колопроктологии. 2019; 29(6): 22-29. [Mayevskaya M.V., Nadinskaia M.Yu., Lunkov V.D. et al. An effect of ursodeoxycholic acid on inflammation, steatosis and liver fibrosis and atherogenesis factors in patients with non alcoholic fatty liver disease: results of the USPEH study. Rossiyskiy zhurnal gastroenterologii, gepatologii, koloproktologii = Russian Journal of Gastroenterology, Hepatology, Coloproctology. 2019; 29(6): 22-29. (In Russ.) https://dx.doi.org/10.22416/1382-4376-2019-29-6-22-29. EDN: AJZEKK.
  53. Гриневич В.Б., Кравчук Ю.А., Педь В.И. с соавт. Ведение пациентов с заболеваниями органов пищеварения в период пандемии COVID-19. Клинические рекомендации Российского научного медицинского общества терапевтов и Научного общества гастроэнтерологов России (2-е издание). Экспериментальная и клиническая гастроэнтерология. 2021; 3: 5-82. [Grinevich V.B., Kravchuk Yu. A., Ped V.I. Management of patients with digestive diseases during the COVID-19 pandemic. Clinical practice guidelines by the Russian Scientific Medical Society of Internal Medicine (RSMSIM) and the Gastroenterological Scientific Society of Russia (2nd edition). Eksperimental'naya i klinicheskaya gastroenterologiya = Experimental and Clinical Gastroenterology. 2021; 3: 5-82 (In Russ.)]. https://dx.doi.org/10.31146/1682-8658-ecg-187-3-5-82. EDN: CYDGTM.
  54. Mroz M.S., Harvey B.J. Ursodeoxycholic acid inhibits ENaC and Na/K. pump activity to restore airway surface liquid height in cystic fibrosis bronchial epithelial cells. Steroids. 2019; 151: 108461. https://dx.doi.org/10.1016/j.steroids.2019.108461.
  55. Schultz F., Hasan A., Alvarez-Laviada A. et al. The protective effect of ursodeoxycholic acid in an in vitro model of the human fetal heart occurs via targeting cardiac fibroblasts. Prog Biophys Mol Biol. 2016; 120(1-3): 149-63. https://dx.doi.org/10.1016/j.pbiomolbio.2016.01.003.
  56. Isik S., Karaman M., Cilaker Micili S. et al. Beneficial effects of ursodeoxycholic acid via inhibition of airway remodelling, apoptosis of airway epithelial cells, and Th2 immune response in murine model of chronic asthma. Allergol Immunopathol (Madr). 2017; 45(4): 339-49. https://dx.doi.org/10.1016/j.aller.2016.12.003.
  57. Niu F., Xu X., Zhang R. et al. Ursodeoxycholic acid stimulates alveolar fluid clearance in LPS-induced pulmonary edema via ALX/cAMP/PI3K pathway. J. Cell Physiol. 2019; 234(11): 20057-65. https://dx.doi.org/10.1002/jcp.28602.
  58. Государственный реестр лекарственных средств Минздрава России. Инструкции по медицинскому применению лекарственных препаратов с МНН урсодезоксихолевая кислота. Доступ: https://grls.rosminzdrav.ru/(дата обращения - 01.08.2022).
  59. Brevini T., Maes M., Webb G.J. et al. FXR antagonists as new agents for COVID19. Gut. 2021; 70(Suppl 3): A1-A76. https://dx.doi.org/10.1136/gutjnl-2021-BASL.7.
  60. Ko W.K., Kim S.J., Jo M.J. et al. Ursodeoxycholic Acid inhibits inflammatory responses and promotes functional recovery after spinal cord injury in rats. Mol Neurobiol. 2019; 56(1): 267-77. https://dx.doi.org/10.1007/s12035-018-0994-z.
  61. Тихонов И.Н., Ивашкин В.Т., Жаркова М.С. с соавт. Результаты неинтервенционной наблюдательной программы «Влияние нового коронавируса на состояние пациентов с заболеваниями печени и желудочно-кишечного Тракта и влияние препаратов Урсодезоксихолевой кислоты и Ребамипида на течение инфекции COVID-19 (КОНТУР)». Медицинский совет. 2021; 21-1: 106-119. https://dx.doi.org/10.21518/2079-701X-2021-21-1-106-119. EDN: IYMVUM.
  62. Гриневич В.Б., Губонина И.В., Дощицин В.Л. с соавт. Особенности ведения коморбидных пациентов в период пандемии новой коронавирусной инфекции (COVID-19). Национальный консенсус 2020. Кардиоваскулярная терапия и профилактика. 2020; 19(4): 135-172. [Grinevich V.B., Gubonina I.V., Doshchitsin V.L. et al. Management of patients with comorbidity during novel coronavirus (COVID-19) pandemic. National consensus statement 2020. Kardiovaskulyarnaya terapiya i profilaktika = Cardiovascular Therapy and Prevention. 2020; 19(4): 135-172 (In Russ.)]. https://dx.doi.org/10.15829/1728-8800-2020-2630. EDN: YFTNJR.

补充文件

附件文件
动作
1. JATS XML

版权所有 © Bionika Media, 2022
##common.cookie##