Insomnia as a comorbid disorder

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Insomnia is one of the most prevalent sleep disorders worldwide. Its presence could serve as a risk factor for the development of chronic diseases or accompany somatic and mental illnesses, leading their course to be more severe. Most often, insomnia as a comorbid condition occurs in arterial hypertension, diabetes mellitus, arthritis, and depression. Moreover, sleep disturbance is often the result of side effects of drugs prescribed to treat the underlying disease. Therefore, if insomnia occurs against the background of other health disorders, a rational approach to the treatment of the underlying disease is necessary, taking into account the presence of sleep disorders. The most effective method of treating insomnia is cognitive behavioral therapy, which can be used both as monotherapy and in combination with the prescription of sleeping pills, which increases adherence to treatment. A number of studies have convincingly demonstrated that the correction of insomnia in many cases leads to an alleviation of the course of comorbid diseases.

Full Text

Restricted Access

About the authors

Andrey O. Golovatyuk

I.M. Sechenov First Moscow State Medical University of the Ministry of Healthcare of Russia (Sechenov University)

Email: a.golovatyuk@nphys.ru
ORCID iD: 0000-0001-6304-3479

neurologist at the Department of sleep medicine of the University Clinical Hospital No. 3, I.M. Sechenov First Moscow State Medical University of the Ministry of Healthcare of Russia (Sechenov University).

Russian Federation, 119021, Moscow,11/4, bld. 4,5 Rossolimo Str.

Alexey I. Kochetkov

Russian Medical Academy of Continuous Professional Education of the Ministry of Healthcare of Russia

Email: ak_info@list.ru
ORCID iD: 0000-0001-5801-3742

PhD in Medical Sciences, associate professor of the Department of therapy and polymorbid pathology, Russian Medical Academy of Continuous Professional Education of the Ministry of Healthcare of Russia

Russian Federation, 125284, Moscow,12/13 Polikarpova Str.

Tatyana M. Остроумова

I.M. Sechenov First Moscow State Medical University of the Ministry of Healthcare of Russia (Sechenov University)

Email: t.ostroumova3@gmail.com
ORCID iD: 0000-0003-1499-247X

PhD in Medical Sciences, assistant at the Department of nervous diseases and neurosurgery, I.M. Sechenov First Moscow State Medical University of the Ministry of Healthcare of Russia (Sechenov University)

Russian Federation, 119021, Moscow,11/4, bld. 4,5 Rossolimo Str

Olga D. Ostroumova

I.M. Sechenov First Moscow State Medical University of the Ministry of Healthcare of Russia (Sechenov University); Russian Medical Academy of Continuous Professional Education of the Ministry of Healthcare of Russia

Author for correspondence.
Email: ostroumova.olga@mail.ru
ORCID iD: 0000-0002-0795-8225
SPIN-code: 3910-6585

MD, professor, head of the Department of therapy and polymorbid pathology named after academician M.S. Vovsi, professor of the Department of clinical pharmacology and propaedeutics of internal diseases

Russian Federation, Moscow; 125993, Moscow, 2/1 Barrikadnaya Str., bldg. 1

Mikhail G. Poluektov

Russian Medical Academy of Continuous Professional Education of the Ministry of Healthcare of Russia

Email: polouekt@mail.ru
ORCID iD: 0000-0001-6215-0918

PhD in Medical Sciences, associate professor, head of the Department of sleep medicine of the University Clinical Hospital No. 3, I.M. Sechenov First Moscow State Medical University of the Ministry of Healthcare of Russia (Sechenov University)

Russian Federation, 125284, Moscow,12/13 Polikarpova Str.

References

  1. American Academy of Sleep Medicine. International classification of sleep disorders. 3rd ed. Darien, IL: American Academy of Sleep Medicine. 2014.
  2. Saper C., Chou T., Scammell T. The sleep switch: Hypothalamic control of sleep and wakefulness. Trends Neurosci. 2001; 24(12): 726-31. https://dx.doi.org/10.1016/s0166-2236(00)02002-6.
  3. Takahashi K., Lin J., Sakai K. Characterization and mapping of sleep-waking specific neurons in the basal forebrain and preoptic hypothalamus in mice. Neuroscience. 2009; 161(1): 269-92. https://dx.doi.org/10.1016/j.neuroscience.2009.02.075
  4. Kay D., Buysse D. Hyperarousal and beyond: New insights to thepathophysiology of insomnia disorder through functional neuroimaging studies. Brain Sci. 2017; 7(3): 23. https://dx.doi.org/10.3390/brainsci7030023.
  5. Someren S. Brain mechanisms of insomnia: new perspectives on causes and consequences. Physiol Rev. 2021; 101(3): 995-1046. https://dx.doi.org/10.1152/physrev.00046.2019.
  6. Tao F., Cao Z., Jiang Y. et al. Associations of sleep duration and quality with incident cardiovascular disease, cancer, and mortality: a prospective cohort study of 407,500 UK biobank participants. Sleep Med. 2021; 81: 401-9. https://dx.doi.org/10.1016/j.sleep.2021.03.015.
  7. Leonardi M., Chatterji S., Koskinen S., Ayuso-Mateos J. et al. Determinants of health and disability in ageing population: The COURAGE in Europe Project (collaborative research on ageing in Europe). Clin Psychol Psychother. 2014; 21(3): 193-98. https://dx.doi.org/10.1002/cpp.1856.
  8. Vgontzas A., Liao D., Pejovic S. et al. Insomnia with objective short sleep duration is associated with type 2 diabetes: A population-based study. Diabetes Care. 2009; 32(11): 1980-85. https://dx.doi.org/10.2337/dc09-0284.
  9. Buxton O., Pavlova M., Reid E. et al. Sleep restriction for 1 week reduces insulin sensitivity in healthy men. Diabetes. 2010; 59(9): 2126-33. https://dx.doi.org/10.2337/db09-0699.
  10. Global Obesity Observatory. URL: https://data.worldobesity.org/#RU|36|A|F (date of access - 01.03.2023).
  11. Suka M., Yoshida K., Sugimori H. Persistent insomnia is a predictor of hypertension in Japanese male workers. J Occup Health. 2003; 45(6): 344-50. https://dx.doi.org/10.1539/joh.45.344ю
  12. Clark A., Salo P., Lange T. et al. Onset of impaired sleep and cardiovascular disease risk factors: a longitudinal study. Sleep. 2016; 39(9): 1709-18. https://dx.doi.org/10.5665/sleep.6098ю
  13. Ramos A., Weng J., Wallace D. et al. Sleep patterns and hypertension using actigraphy in the Hispanic Community Health Study/Study of Latinos. Chest. 2018; 153(1): 87-93. https://dx.doi.org/10.1016/j.chest.2017.09.028ю
  14. Backhaus J., Junghanns K., Hohagen F. Sleep disturbances are correlated with decreased morning awakening salivary cortisol. Psychoneuroendocrinology. 2004; 29(9): 1184-91. https://dx.doi.org/10.1016/j.psyneuen.2004.01.010ю
  15. Louie G., Tektonidou M., Caban-Martinez A., Ward M. Sleep disturbances in adults with arthritis: prevalence, mediators, and subgroups at greatest risk. Data from the 2007 National Health Interview Survey. Arthritis Care Res (Hoboken). 2011; 63(2): 247-60. https://dx.doi.org/10.1002/acr.20362.
  16. Bjurstrom M., Olmstead R., Irwin M. Reciprocal relationship between sleep macrostructure and evening and morning cellular inflammation in rheumatoid arthritis. Psychosom Med. 2017; 79(1): 24-33. https://dx.doi.org/10.1097/PSY.0000000000000363.
  17. Karatas G., Bal A., Yuceege M. et al. The evaluation of sleep quality and response to anti-tumor necrosis factor α therapy in rheumatoid arthritis patients. Clin Rheumatol. 2017; 36(1): 45-50. https://dx.doi.org/10.1007/s10067-016-3387-6.
  18. Jaussent I., Bouyer J., Ancelin M. et al. Insomnia and daytime sleepiness are risk factors for depressive symptoms in the elderly. Sleep. 2011; 34(8): 1103-10. https://dx.doi.org/10.5665/SLEEP.1170.
  19. Irwin M., Wang M., Ribeiro D. et al. Sleep loss activates cellular inflammatory signaling. Biol Psychiatry. 2008; 64(6): 538-40. https://dx.doi.org/10.1016/j.biopsych.2008.05.004.
  20. Slavich G., Irwin M. From stress to inflammation and major depressive disorder: a social signal transduction theory of depression. Psychol Bull. 2014; 140(3): 774-815. https://dx.doi.org/10.1037/a0035302.
  21. Kucukdagli P. Polypharmacy and related factors in geriatric outpatients. Eur J Geriatr Gerontol. 2019; 1(2): 56. https://dx.doi.org/10.4274/ejgg.galenos.2019.144.
  22. Остроумова О.Д., Исаев Р.И., Переверзев А.П. Лекарственно-индуцированная инсомния у пациентов пожилого и старческого возраста. Журнал неврологии и психиатрии имени С.С. Корсакова. 2019; 119(8): 142-152. [Ostroumova O.D., Isaev R.I., Pereverzev A.P. Drug-induced insomnia in old and very old patients. Zhurnal nevrologii i psikhiatrii imeni S.S. Korsakova = S.S. Korsakov Journal of Neurology and Psychiatry. 2019; 119(8): 142-152 (In Russ.)]. https://dx.doi.org/jnevro2019119081142. EDN: WGDSRX.
  23. Doghramji K., Jangro W. Adverse effects of psychotropic medications on sleep. Psychiatr Clin North Am. 2016; 39(3): 487-502. https://dx.doi.org/10.1016/j.psc.2016.04.009
  24. Gastel A. Drug-induced insomnia and excessive sleepiness. Sleep Med Clin. 2018; 13(2): 147-59. https://dx.doi.org/10.1016/j.jsmc.2018.02.001.
  25. Datta S., Maclean R. Neurobiological mechanisms for the regulation of mammalian sleep-wake behavior: Reinterpretation of historical evidence and inclusion of contemporary cellular and molecular evidence. Neurosci Biobehav Rev. 2007; 31(5): 775-824. https://dx.doi.org/10.1016/j.neubiorev.2007.02.004.
  26. De Crescenzo F., D’Alo G., Ostinelli E. et al. Comparative effects of pharmacological interventions for the acute and long-term management of insomnia disorder in adults: A systematic review and network meta-analysis. Lancet. 2022; 400(10347): 170-84. https://dx.doi.org/10.1016/S0140-6736(22)00878-9.
  27. Государственный реестр лекарственных средств Минздрава России. Инструкция по медицинскому применению лекарственного препарата Донормил. РУ: ЛП-№(001263)-(РГ-RU). Доступ: https://grls.rosminzdrav.ru/Grls_View_v2.aspx?routingGuid=9b48d91b-0410-4896-8e58-6aa06961cf92 (дата обращения - 01.03.2023). [State Register of Medicines of the Ministry of Healthcare of Russia. Instructions for medical use of the drug Donormil. Registration certificate: ЛП-№(001263)-(РГ-RU). URL: https://grls.rosminzdrav.ru/Grls_View_v2.aspx?routingGuid=9b48d91b-0410-4896-8e58-6aa06961cf92 (date of access - 01.03.2023) (In Russ.)].
  28. Murphy P., Badia P., Myers B. et al. Nonsteroidal anti-inflammatory drugs affect normal sleep patterns in humans. Physiol Behav. 1994; 55(6): 1063-66. https://dx.doi.org/10.1016/0031-9384(94)90388-3.
  29. Gengo F. Effects of ibuprofen on sleep quality as measured using polysomnography and subjective measures in healthy adults. Clin Ther. 2006; 28(11): 1820-26. https://dx.doi.org/10.1016/j.clinthera.2006.11.018.
  30. Pagel J., Helfter P. Drug induced nightmares-an etiology based review. Hum Psychopharmacol 2003; 18(1): 59-67. https://dx.doi.org/10.1002/hup.465.
  31. Schweitzer P., Randazzo A. Drugs that disturb sleep and wakefulness. In: Kryger MH, Roth T, Dement WC, editors. Principles and practice of sleep medicine. 6th edition. Philadelphia: Elsevier. 2017; pp. 480-98. https://dx.doi.org/10.1016/B978-0-323-24288-2.00045-3.
  32. Gundersen T., Wiklund I., Swedberg K. et al. Effects of 12 weeks of ramipril treatment on the quality of life in patients with moderate congestive heart failure: results of a placebo-controlled trial. Ramipril Study Group. Cardiovasc Drugs Ther. 1995; 9(4): 589-94. https://dx.doi.org/10.1007/BF00878091.
  33. Riemann D., Baglioni C., Bassetti C. et al. European guideline for the diagnosis and treatment of insomnia. J Sleep Res. 2017; 26(6): 675-700. https://dx.doi.org/10.1111/jsr.12594.
  34. Moreno B., Contreras R., Martinez S. et al. [Effects of a cognitive-behavioral intervention on blood pressure of hypertensive elderly subjects]. Revista medica de Chile. 2006; 134(4): 433-40. https://dx.doi.org/10.4067/s0034-98872006000400005.
  35. Blom K., Jernelov S., Ruck C. Three-year follow-up comparing cognitive behavioral therapy for depression to cognitive behavioral therapy for insomnia, for patients with both diagnoses. Sleep. 2017; 40(8): 1-14. https://dx.doi.org/10.1093/sleep/zsx108.
  36. Sadler P., McLaren S., Klein B. Cognitive behavior therapy for older adults with insomnia and depression: A randomized controlled trial in community mental health services. Sleep. 2018; 41(8): 1-41. https://dx.doi.org/10.1093/sleep/zsy104.
  37. Herring W., Connor K., Ivgy-May N. et al. Suvorexant in patients with insomnia: results from two 3-month randomized controlled clinical trials. Biol Psychiatry. 2016; 79(2): 136-48. https://dx.doi.org/10.1016/j.biopsych.2014.10.003.
  38. Ferracioli-Oda E., Qawasmi A., Bloch M. Meta-analysis: Melatonin for the treatment of primary sleep disorders. PLoS One. 2013; 8(5): e63773. https://dx.doi.org/10.1371/journal.pone.0063773.
  39. Koopman D.M., Beulens J.W., Dijkstra T. et al. Prevalence of insomnia (symptoms) in T2D and association with metabolic parameters and glycemic control: meta-analysis. J Clin Endocrinol Metab. 2020; 105(3): 614-43. https://dx.doi.org/10.1210/clinem/dgz065.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig.1.

Download (92KB)
3. Fig.2.

Download (167KB)

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies