Anticoagulant therapy for non-valvular atrial fibrillation patients with CHA2DS2-VASc (regardless of gender): a personalized approach based on risk/benefit analysis

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Initiation of oral anticoagulant therapy in patients with non-valvular atrial fibrillation and a CHA2DS2-VASc score of 1 in male and 2 in female patients is a point of difficult choice in clinical practice. Therapeutic decisions in this group of intermediate-risk patients should provide a balance between the individual benefit of reducing the risk of thromboembolism and potential harm due to increased risk of bleeding. Article summarizes the currently available data on antithrombotic treatment of patients in such clinical group. Additional factors which need to be necessarily considered in the personalized estimation of individual risk of thromboembolism in patients with atrial fibrillation, to decide on the initiation of anticoagulant therapy are discussed.

Full Text

Restricted Access

About the authors

Tatyana V. Adasheva

A.I. Yevdokimov Moscow State University of Medicine and Dentistry of the Ministry of Healthcare of Russia

Author for correspondence.
Email: adashtv@mail.ru
ORCID iD: 0000-0002-3763-8994

MD, professor, professor of the Department of therapy and preventive medicine

Russian Federation, Moscow

Elena I. Samorukova

A.I. Yevdokimov Moscow State University of Medicine and Dentistry of the Ministry of Healthcare of Russia

Email: wlrad@bk.ru
ORCID iD: 0000-0002-8912-1348

PhD in Medical Sciences, assistant at the Department of polyclinic therapy

Russian Federation, Moscow

Ekaterina E. Gubernatorova

A.I. Yevdokimov Moscow State University of Medicine and Dentistry of the Ministry of Healthcare of Russia

Email: creativone@list.ru
ORCID iD: 0009-0009-4149-9497

PhD in Medical Sciences, assistant at the Department of polyclinic therapy

Russian Federation, Moscow

Elena G. Lobanova

A.I. Yevdokimov Moscow State University of Medicine and Dentistry of the Ministry of Healthcare of Russia

Email: e.g.lobanova@mail.ru
ORCID iD: 0000-0002-5815-2942

MD, professor of the Department of pharmacology

Russian Federation, Moscow

Natalya B. Shakhrai

A.I. Yevdokimov Moscow State University of Medicine and Dentistry of the Ministry of Healthcare of Russia

Email: nholodkova@mail.ru
ORCID iD: 0000-0002-4223-1064

PhD in Medical Sciences, associate professor of the Department of therapy and preventive medicine

Russian Federation, Moscow

References

  1. Benjamin E.J., Muntner P., Alonso A. et al.; American Heart Association Council on Epidemiology and Prevention Statistics Committee and Stroke Statistics Subcommittee. Heart disease and stroke statistics 2019 update: A report from the American Heart Association. Circulation. 2019; 139(10): e528. https://dx.doi.org/10.1161/CIR.0000000000000659.
  2. Chugh S.S., Havmoeller R., Narayanan K. et al. Worldwide epidemiology of atrial fibrillation: A Global Burden of Disease 2010 Study. Circulation. 2014; 129(8): 837–47. https://dx.doi.org/10.1161/CIRCULATIONAHA.113.005119.
  3. Colilla S., Crow A., Petkun W. et al. Estimates of current and future incidence and prevalence of atrial fibrillation in the US adult population. Am J Cardiol. 2013; 112(8): 1142–47. https://dx.doi.org/10.1016/j.amjcard.2013.05.063.
  4. Krijthe B.P., Kunst A., Benjamin E.J. et al. Projections on the number of individuals with atrial fibrillation in the European Union, from 2000 to 2060. Eur Heart J. 2013; 34(35): 2746–51. https://dx.doi.org/10.1093/eurheartj/eht280.
  5. Staerk L., Sherer J.A., Ko D. et al. Atrial fibrillation: Epidemiology, pathophysiology, and clinical outcomes. Circ Res. 2017; 120(9): 1501–17. https://dx.doi.org/10.1161/CIRCRESAHA.117.309732.
  6. Clinical guidelines. Atrial fibrillation and flutter in adults. Russian Society of Cardiology, All-Russian Scientific Society of Specialists in Clinical Electrophysiology, Arrhythmology and Electrical Stimulation, Association of Cardiovascular Surgeons of Russia. Rubricator of clinical guidelines of the Ministry of Healthcare of Russia. 2020. ID: 382. URL: https://cr.minzdrav.gov.ru/schema/382_1 (date of access – 01.05.2023) (In Russ.).
  7. Hindricks G., Potpara T., Dagres N. et al.; ESC Scientific Document Group. 2020 ESC Guidelines for the diagnosis and management of atrial fibrillation developed in collaboration with the European Association of Cardio-Thoracic Surgery (EACTS). Eur Heart J. 2021; 42(5): 373–498. https://dx.doi.org/10.1093/eurheartj/ehaa612.
  8. Alkhouli M., Friedman P.A. Ischemic stroke risk in patients with nonvalvular atrial fibrillation: JACC review topic of the week. J Am Coll Cardiol. 2019; 74(24): 3050–65. https://dx.doi.org/10.1016/j.jacc.2019.10.040.
  9. Hu W.S., Lin C.L. CHA2DS2-VASc score for ischaemic stroke risk stratification in patients with chronic obstructive pulmonary disease with and without atrial fibrillation: A nationwide cohort study. Europace. 2018; 20(4): 575–81. https://dx.doi.org/10.1093/europace/eux065.
  10. Lehtola H., Airaksinen K.E.J., Hartikainen P. et al. Stroke recurrence in patients with atrial fibrillation: concomitant carotid artery stenosis doubles the risk. Eur J Neurol. 2017; 24(5): 719–25. https://dx.doi.org/10.1111/ene.13280.
  11. Siddiqi T.J., Usman M.S., Shahid I. et al. Utility of the CHA2DS2-VASc score for predicting ischaemic stroke in patients with or without atrial fibrillation: A systematic review and meta-analysis. Eur J Prev Cardiol. 2022; 29(4): 625–31. https://dx.doi.org/10.1093/eurjpc/zwab018.
  12. Tiver K.D., Quah J., Lahiri A. et al. Atrial fibrillation burden: an update – the need for a CHA2DS2-VASc-AFBurden score. Europace. 2021; 23(5): 665–73. https://dx.doi.org/10.1093/europace/euaa287.
  13. Passman R., Bernstein R.A. New appraisal of atrial fibrillation burden and stroke prevention. Stroke. 2016; 47(2): 570–76. https://dx.doi.org/10.1161/STROKEAHA.115.009930.
  14. Chen L.Y., Chung M.K., Allen L.A. et al. Atrial fibrillation burden: Moving beyond atrial fibrillation as a binary entity. A scientific statement from the American Heart Association. Circulation. 2018; 137(20): e623–44. https://dx.doi.org/10.1161/CIR.0000000000000568.
  15. Wasserlauf J., You C., Patel R. et al. Smartwatch performance for the detection and quantification of atrial fibrillation. Circ Arrhythm Electrophysiol. 2019; 12(6): e006835. https://dx.doi.org/10.1161/CIRCEP.118.006834.
  16. Diederichsen S.Z., Haugan K.J., Kronborg C. et al. A comprehensive evaluation of rhythm monitoring strategies in screening for atrial fibrillation: Insights from patients at risk long-term monitored with implantable loop recorder. Circulation. 2020; 141(19): 1510–22. https://dx.doi.org/10.1161/CIRCULATIONAHA.119.044407.
  17. Al-Khatib S.M., Thomas L., Wallentin L. et al. Outcomes of apixaban vs. warfarin by type and duration of atrial fibrillation: Results from the ARISTOTLE trial. Eur Heart J .2013; 34(31): 2464–71. https://dx.doi.org/10.1093/eurheartj/eht135.
  18. Link M.S., Giugliano R.P., Ruff C.T. et al.; ENGAGE AF-TIMI 48 Investigators. Stroke and mortality risk in patients with various patterns of atrial fibrillation: Results from the ENGAGE AF-TIMI 48 trial (Effective Anticoagulation with Factor Xa Next Generation in Atrial Fibrillation – Thrombolysis in Myocardial Infarction 48). Circ Arrhythm Electrophysiol. 2017; 10(1): e004267. https://dx.doi.org/10.1161/CIRCEP.116.004267.
  19. Steinberg B.A., Hellkamp A.S., Lokhnygina Y. et al.; ROCKET-AF Steering Committee and Investigators. Higher risk of death and stroke in patients with persistent vs. paroxysmal atrial fibrillation: Results from the ROCKET-AF trial. Eur Heart J. 2015; 36(5): 288–96. https://dx.doi.org/10.1093/eurheartj/ehu359.
  20. Ganesan A.N., Chew D.P., Hartshorne T. et al. The impact of atrial fibrillation type on the risk of thromboembolism, mortality, and bleeding: A systematic review and meta-analysis. Eur Heart J. 2016; 37(20): 1591–602. https://dx.doi.org/10.1093/eurheartj/ehw007.
  21. Boriani G., Botto G.L., Padeletti L. et al.; Italian AT-500 Registry Investigators. Improving stroke risk stratification using the CHADS2 and CHA2DS2-VASc risk scores in patients with paroxysmal atrial fibrillation by continuous arrhythmia burden monitoring. Stroke. 2011; 42(6): 1768–70. https://dx.doi.org/10.1161/STROKEAHA.110.609297.
  22. Go A.S., Reynolds K., Yang J. et al. Association of burden of atrial fibrillation with risk of ischemic stroke in adults with paroxysmal atrial fibrillation. The KP-RHYTHM Study. JAMA Cardiol. 2018; 3(7): 601–8. https://dx.doi.org/10.1001/jamacardio.2018.1176.
  23. Botto G.L., Padeletti L., Santini M. et al. Presence and duration of atrial fibrillation detected by continuous monitoring: Crucial implications for the risk of thromboembolic events. Cardiovasc Electrophysiol. 2009; 20(3): 241–48. https://dx.doi.org/10.1111/j.1540-8167.2008.01320.x.
  24. Kaplan R.M., Koehler J., Ziegler P.D. et al. Stroke risk as a function of atrial fibrillation duration and CHA2DS2-VASc score. Circulation. 2019; 140(20): 1639–46. https://dx.doi.org/10.1161/CIRCULATIONAHA.119.041303.
  25. Sun Y., Ling Y., Chen Z. et al. Finding low CHA2DS2-VASc scores unreliable? Why not give morphological and hemodynamic methods a try? Front Cardiovasc. Med. 2023; 9: 1032736. https://dx.doi.org/10.3389/fcvm.2022.1032736.
  26. Wang Y., Qiao Y.H., Mao Y.K. et al. Numerical prediction of thrombosis risk in left atrium under atrial fibrillation. Math Biosci Engineer. 2020; 17(3): 2348–60. https://dx.doi.org/10.3934/mbe.2020125.
  27. Yaghi S., Chang A.D., Akiki R. et al. The left atrial appendage morphology is associated with embolic stroke subtypes using a simple classification system: A proof of concept study. J Cardiovasc Comput Tomogr. 2020; 14(1): 27–33. https://dx.doi.org/10.1016/j.jcct.2019.04.005.
  28. Dudzinska-Szczerba K., Michałowska I., Piotrowski R. et al. Assessment of the left atrial appendage morphology in patients after ischemic stroke – The ASSAM study. Int J Cardiol. 2021; 330: 65–72. https://dx.doi.org/10.1016/j.ijcard.2021.01.001.
  29. Fang R., Li Y., Zhang Y. et al. Impact of left atrial appendage location on risk of thrombus formation in patients with atrial fibrillation. Biomech Model Mechanobiol. 2021; 20(4): 1431–43. https://dx.doi.org/10.1007/s10237-021-01454-4.
  30. Cai Y., Xiong Q., Chen S. et al. Left atrial appendage thrombus in patients with nonvalvular atrial fibrillation before catheter ablation and cardioversion: Risk factors beyond the CHA2DS2-VASc score. J Cardiovasc Dev Dis. 2022; 9(2): 46. https://dx.doi.org/10.3390/jcdd9020046.
  31. Huang J., Liao H.T., Fei H.W. et al. Association of thromboembolic risk score with left atrial thrombus and spontaneous echocardiographic contrast in non-anticoagulated nonvalvular atrial fibrillation patients. Cardiology. 2018; 140(2): 87–95. https://dx.doi.org/10.1159/000489390
  32. Chen J., Zhou M., Wang H. et al. Risk factors for left atrial thrombus or spontaneous echo contrast in non-valvular atrial fibrillation patients with low CHA(2)DS(2)-VASc score. J Thromb Thrombolysis. 2022; 53(2): 523–31. https://dx.doi.org/10.1007/s11239-021-02554-9.
  33. Lei C., Gao Q., Wei R. et al. Fractal geometry illustrated left atrial appendage morphology that predicted thrombosis and stroke in patients with atrial fibrillation. Front Cardiovasc Med. 2022; 9: 779528. https://dx.doi.org/10.3389/fcvm.2022.779528.
  34. Regazzoli D., Ancona F., Trevisi N. et al. Left atrial appendage: Physiology, pathology, and role as a therapeutic target. Biomed Res Int. 2015; 2015: 205013. https://dx.doi.org/10.1155/2015/205013.
  35. Bosi G.M., Cook A., Rai R. et al. Computational fluid dynamic analysis of the left atrial appendage to predict thrombosis risk. Front Cardiovasc Med. 2018; 5: 34. https://dx.doi.org/10.3389/fcvm.2018.00034
  36. Yosefy C., Pery M., Nevzorov R. et al. Difference in left atrial appendage remodeling between diabetic and nondiabetic patients with atrial fibrillation. Clin Cardiol. 2020; 43(1): 71–77. https://dx.doi.org/10.1002/clc.23292
  37. Chen Z., Bai W., Li C. et al. Left atrial appendage parameters assessed by real-time three-dimensional transesophageal echocardiography predict thromboembolic risk in patients with nonvalvular atrial fibrillation. J Ultras Med. 2017; 36(6): 1119–28. https://dx.doi.org/10.7863/ultra.16.05070
  38. Vella D., Monteleone A., Musotto G. et al. Effect of the alterations in contractility and morphology produced by atrial fibrillation on the thrombosis potential of the left atrial appendage. Front Bioengineer Biotechnol. 2021; 9: 586041. https://dx.doi.org/10.3389/fbioe.2021.586041.
  39. Durmaz E., Karpuz M.H., Bilgehan K. et al. Left atrial thrombus in patients with atrial fibrillation and under oral anticoagulant therapy; 3-D transesophageal echocardiographic study. Int J Cardiovasc Imaging. 2020; 36(6): 1097–103. https://dx.doi.org/10.1007/s10554-020-01811-x.
  40. Benjamin E., D’Agostino R., Belanger A. et al. Left atrial size and the risk of stroke and death. The Framingham Heart Study. Circulation 1995; 92(4): 835–41. https://dx.doi.org/10.1161/01.cir.92.4.835.
  41. Lee J.M., Shim J., Uhm J.-S. et al. Impact of increased orifice size and decreased flow velocity of left atrial appendage on stroke in nonvalvular atrial fibrillation. Am J Cardiol. 2014; 113(6): 963–69. https://dx.doi.org/10.1016/j.amjcard.2013.11.058.
  42. Yaghi S., Moon Y.P., Mora-McLaughlin C. et al. Left atrial enlargement and stroke recurrence: The Northern Manhattan Stroke Study. Stroke. 2015; 46(6): 1488–93. https://dx.doi.org/10.1161/STROKEAHA.115.008711.
  43. Liao J.N., Chao T.F., Kuo J.Y. et al. Global left atrial longitudinal strain using 3-beat method improves risk prediction of stroke over conventional echocardiography in atrial fibrillation. Circ Cardiovasc Imaging. 2020; 13(8): e010287. https://dx.doi.org/10.1161/CIRCIMAGING.119.010287.
  44. Liao J.N., Chao T.F., Hung C.L., Chen S.A. The decrease in peak atrial longitudinal strain in patients with atrial fibrillation as a practical parameter for stroke risk stratification. Heart Rhythm. 2021; 18(4): 538–44. https://dx.doi.org/10.1016/j.hrthm.2020.12.026.
  45. Kuo L., Chan Y.H., Liao J.N. et al. Stroke and bleeding risk assessment in atrial fibrillation: Where are we now? Korean Circ J. 2021; 51(8): 668–80. https://dx.doi.org/10.4070/kcj.2021.0170.
  46. Hijazi Z., Lindback J., Alexander J.H. et al. The ABC (age, biomarkers, clinical history) stroke risk score: A biomarker-based risk score for predicting stroke in atrial fibrillation. Eur Heart J. 2016; 37(20): 1582–90. https://dx.doi.org/10.1093/eurheartj/ehw054.
  47. Rivera-Caravaca J.M., Roldan V., Esteve-Pastor M.A. et al. Long-term stroke risk prediction in patients with atrial fibrillation: comparison of the ABC-stroke and CHA2DS2-VASc scores. J Am Heart Assoc. 2017; 6(7): e006490. https://dx.doi.org/10.1161/JAHA.117.006490.
  48. Oyama K., Giugliano R.P., Berg D.D. et al. Serial assessment of biomarkers and the risk of stroke or systemic embolism and bleeding in patients with atrial fibrillation in the ENGAGE AF-TIMI 48 trial. Eur Heart J. 2021; 42(17): 1698–706. https://dx.doi.org/10.1093/eurheartj/ehab141.
  49. Chao T.F., Liu C.J., Wang K.L. et al. Should atrial fibrillation patients with 1 additional risk factor of the CHA2DS2-VASc score (beyond sex) receive oral anticoagulation? J Am Coll Cardiol. 2015; 65(7): 635–42. https://dx.doi.org/10.1016/j.jacc.2014.11.046.
  50. Friberg L., Rosenqvist M., Lip G.Y. Evaluation of risk stratification schemes for ischaemic stroke and bleeding in 182 678 patients with atrial fibrillation: The Swedish Atrial Fibrillation cohort study. Eur Heart J. 2012; 33(12): 1500–10. https://dx.doi.org/10.1093/eurheartj/ehr488.
  51. Hijazi Z., Oldgren J., Lindback J. et al; ARISTOTLE and RE-LY Investigators. The novel biomarker-based ABC (age, biomarkers, clinical history) – bleeding risk score for patients with atrial fibrillation: A derivation and validation study. Lancet. 2016; 387(10035): 2302–11. https://dx.doi.org/10.1016/S0140-6736(16)00741-8.
  52. Zeng W.T., Sun X.T., Tang K. et al. Risk of thromboembolic events in atrial fibrillation with chronic kidney disease. Stroke. 2015; 46(1): 157–63. https://dx.doi.org/10.1161/STROKEAHA.114.006881.
  53. Piccini J.P., Stevens S.R., Chang Y. et al.; ROCKET AF Steering Committee and Investigators. Renal dysfunction as a predictor of stroke and systemic embolism in patients with nonvalvular atrial fibrillation: validation of the R2CHADS2 index in the ROCKET AF (Rivaroxaban Once-Daily, Oral, Direct Factor Xa Inhibition Compared with Vitamin K Antagonism for Prevention of Stroke and Embolism Trial in Atrial Fibrillation) and ATRIA (Anticoagulation and Risk Factors in Atrial Fibrillation) study cohorts. Circulation. 2013; 127(2): 224–32. https://dx.doi.org/10.1161/CIRCULATIONAHA.112.107128.
  54. Singer D.E., Chang Y., Borowsky L.H. et al. A new risk scheme to predict ischemic stroke and other thromboembolism in atrial fibrillation: The ATRIA study stroke risk score. J Am Heart Assoc. 2013; 2(3): e000250. https://dx.doi.org/10.1161/JAHA.113.000250.
  55. Sulzgruber P., Wassmann S., Semb A.G. et al. Oral anticoagulation in patients with nonvalvular atrial fibrillation and a CHA2DS2-VASc score of 1: A current opinion of the European Society of CardiologyWorking Group on Cardiovascular Pharmacotherapy and European Society of Cardiology Council on Stroke. Eur Heart J Cardiovasc Pharmacother. 2019; 5(3): 171–80. https://dx.doi.org/10.1093/ehjcvp/pvz016.
  56. Chang T.Y., Lip G.Y.H., Chen S.A., Chao T.F. Importance of risk reassessment in patients with atrial fibrillation in guidelines: assessing risk as a dynamic process. Can J Cardiol. 2019; 35(5): 611–18. https://dx.doi.org/10.1016/j.cjca.2019.01.018.
  57. Yoon M., Yang P.S., Jang E. et al. Dynamic changes of CHA2DS2-VASc score and the risk of ischaemic stroke in Asian patients with atrial fibrillation: A nationwide cohort study. Thromb Haemost. 2018; 118(7): 1296–304. https://dx.doi.org/10.1055/s-0038-1651482.
  58. Chao T.F., Liao J.N., Tuan T.C. et al. Incident co-morbidities in patients with atrial fibrillation initially with a CHA2DS2-VASc score of 0 (males) or 1 (females): implications for reassessment of stroke risk in initially ‘low-risk’ patients. Thromb Haemost. 2019; 119(7): 1162–70. https://dx.doi.org/10.1055/s-0039-1683933.
  59. Chao T.F., Chiang C.E., Chen T.J. et al. Reassessment of risk for stroke during follow-up of patients with atrial fibrillation. Ann Intern Med. 2019; 170(9): 663–64. https://dx.doi.org/10.7326/M18-1177.
  60. Sulzgruber P., Doehner W., Niessner A. Personalized anti-thromboticmanagement of patients with non-valvular atrial fibrillation and a CHA2DS2-VASc score of 1 – a statement of the ESCWorking Group on Cardiovascular Pharmacotherapy and ESC Council on Stroke. Eur Heart J. 2021; 42(5): 541–43 https://dx.doi.org/10.1093/eurheartj/ehaa1081.
  61. Granger C.B., Alexander J.H., McMurray J.J. et al.; ARISTOTLE Committees and Investigators. Apixaban versus warfarin in patients with atrial fibrillation. N Engl J Med. 2011; 365(11): 981–92. https://dx.doi.org/10.1056/NEJMoa1107039.
  62. Van Ganse E., Danchin N., Mahe I. et al. Comparative safety and effectiveness of oral anticoagulants in nonvalvular atrial fibrillation: The NAXOS study. Stroke. 2020; 51(7): 2066–75. https://dx.doi.org/10.1161/STROKEAHA.120.028825.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig.1. Association of Atrial Fibrillation Workload with Risk of Stroke*

Download (225KB)
3. Fig.2. Algorithm for making a decision on the appointment of oral anticoagulants in patients with atrial fibrillation with a CHA2DS2-VASC score of 1 point

Download (257KB)

Copyright (c) 2023 Bionika Media

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies