Modern concepts concerning the mechanisms of iron absorption: activators, inhibitors, regulation, new possibilities of optimization

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

The article presents current literature data on the mechanisms of iron absorption, activators and inhibitors of this process. Authors are analyzing the published data on the study of the regulation of iron entry into the blood, processes that stimulate and inhibit its absorption, describing in details hepcidin–erythroferron mechanism for iron metabolism controlling. Separately, there are provided the data on food products, nutritional supplements, existing and under study new drugs that change the degree of resorption of iron into intestinal cells, suppressing and potentiating the effect of hepcidin. Scientific studies on a new oral form of sucrosomial Iron, findings on the mechanisms of its absorption, peculiarities of use, and the results of biological and clinical studies are considered.

Full Text

Restricted Access

About the authors

Nikolai I. Stuklov

Peoples’ Friendship University of Russia

Author for correspondence.
Email: stuklovn@gmail.com
ORCID iD: 0000-0002-4546-1578

MD, professor of the Department of hospital therapy with courses of endocrinology, hematology and clinical laboratory diagnostics of the Medical Institute

Russian Federation, Moscow

Anna A. Gurkina

Peoples’ Friendship University of Russia

Email: enmitchell07@gmail.com
ORCID iD: 0000-0003-4164-0058

assistant at the Department of hospital therapy with courses of endocrinology, hematology and clinical laboratory diagnostics of the Medical Institute

Russian Federation, Moscow

Maksim S. Kovalchuk

Peoples’ Friendship University of Russia

Email: HDCX93@gmail.com
ORCID iD: 0000-0002-3847-504X

postgraduate student of the Department of hospital therapy with courses of endocrinology, hematology and clinical laboratory diagnostics of the Medical Institute

Russian Federation, Moscow

Nikolai D. Kisly

Peoples’ Friendship University of Russia

Email: kislyy-nd@rudn.ru
ORCID iD: 0000-0003-2988-2054

MD, professor, head of the Department of hospital therapy with courses of endocrinology, hematology and clinical laboratory diagnostics of the Medical Institute

Russian Federation, Moscow

References

  1. Piskin E., Cianciosi D., Gulec S. et al. Iron absorption: Factors, limitations, and improvement methods. ACS Omega. 2022; 7(24): 20441−56. http://dx.doi.org/10.1021/acsomega.2c01833.
  2. Li Y., Jiang H., Huang G. Protein hydrolysates as promoters of non-haem iron absorption. Nutrients. 2017; 9(6): 609. http://dx.doi.org/10.3390/nu9060609.
  3. Koleini N., Geier J., Ardehali H. Ironing out mechanisms of iron homeostasis and disorders of iron deficiency. J Clin Invest. 2021; 131(11): e148671. http://dx.doi.org/10.1172/JCI148671.
  4. Milman N.T. A review of nutrients and compounds, which promote or inhibit intestinal iron absorption: making a platform for dietary measures that can reduce iron uptake in patients with genetic haemochromatosis. J Nutr Metab. 2020; 2020: 7373498. http://dx.doi.org/10.1155/2020/7373498.
  5. Institute of Medicine and Food and Nutrition Board. Dietary reference intakes for vitamin A, vitamin K, arsenic, boron, chromium, copper; iodine, iron, manganese, molybdenum, nickel, silicon, vanadium, and zinc. National Academic Press, Washington, DC, USA. 2001. http://dx.doi.org/10.17226/10026.
  6. Stuklov N.I., Shih E.V. Iron deficiency in women of reproductive age: a modern view on the problem. Frequency in the Moscow population. Farmakologiya & farmakoterapiya = Pharmacology & Pharmacotherapy. 2022; (4): 16–20 (In Russ.). http://dx.doi.org/10.46393/27132129_2022_4_16. EDN: VZNZQQ.
  7. Czerwonka M., Tokarz, A. Iron in red meat-friend or foe. Meat Sci. 2017; 123: 157−65. http://dx.doi.org/10.1016/j.meatsci.2016.09.012.
  8. Pineda O. Iron bis-glycine chelate competes for the non heme-iron absorption pathway. Am J Clin Nutr. 2003; 78(3): 495–96. http://dx.doi.org/10.1093/ajcn/78.3.495.
  9. Przybyszewska J., Zekanowska E. The role of hepcidin, ferroportin, HCP1, and DMT1 protein in iron absorption in the human digestive tract. Prz Gastroenterol. 2014; 9(4): 208–13. http://dx.doi.org/https://doi.org/10.3945/ajcn.2010.28674F
  10. Conrad M.E., Umbreit J.N. Pathways of iron absorption. Blood Cells Mol Dis. 2002; 29(3): 336–55. http://dx.doi.org/10.1006/bcmd.2002.0564
  11. Jacobs A., Miles P.M. Role of gastric secretion in iron absorption. Gut. 1969; 10(3): 226–29. http://dx.doi.org/10.1136/gut.10.3.226
  12. Shawki A., Anthony S.R., Nose Y. et al. Intestinal DMT1 is critical for iron absorption in the mouse but is not required for the absorption of copper or manganese. Am J Physiol Gastrointest Liver Physiol. 2015; 309(8): G635–47. https://dx.doi.org/10.1152/jpgi.00160.2015.
  13. Gao G., Li J., Zhang Y., Chang Y.Z. Cellular iron metabolism and regulation. Adv Exp Med Biol. 2019; 1173: 21–32. https://dx.doi.org/10.1007/978-981-13-9589-5_2.
  14. Zachariou M., Hearn M.T.W. Protein selectivity in immobilized metal affinity chromatography based on the surface accessibility of aspartic and glutamic acid residues. J Protein Chem. 1995; 14(6): 41–430. https://dx.doi.org/10.1007/bf01888136.
  15. Vij R., Reddi S., Kapila S., Kapila R. Transepithelial transport of milk derived bioactive peptide VLPVPQK. Food Chem. 2016; 190: 681–88. https://dx.doi.org/10.1016/j.foodchem.2015.05.121.
  16. Van Campen D. Enhancement of iron absorption from ligated segments of rat intestine by histidine, cysteine, and lysine: Effects of removing ionizing groups and of stereoisomerism. J Nutr. 1973; 103(1): 139–142. https://dx.doi.org/10.1093/jn/103.1.139.
  17. Delgado M.C.O., Galleano M., Anon M.C., Tironi V.A. Amaranth peptides from simulated gastrointestinal digestion: Antioxidant activity against reactive species. Plant Foods Hum. Nutr. 2015; 70(1): 27–34. https://dx.doi.org/10.1007/s11130-014-0457-2.
  18. Pizarro F., Olivares M., Hertrampf E. et al. Iron bis-glycine chelate competes for the nonheme-iron absorption pathway. Am J Clin Nutr. 2002; 76(3): 577–81. https://doi.org/10.1093/ajcn/76.3.577.
  19. Jacobs P., Bothwell T., Charlton R.W. Role of hydrochloric acid in iron absorption. J Appl Physiol. 1964; 19: 187–88. https://dx.doi.org/10.29327/119179.
  20. Smirnoff N. Ascorbic acid metabolism and functions: A comparison of plants and mammals. Free Radic Biol Med. 2018; 122: 116−29. https://dx.doi.org/10.1016/j.freeradbiomed.2018.03.033.
  21. EFSA Panel on Dietetic Products, Nutrition and Allergies (NDA). Scientific Opinion on the substantiation of a health claim related to vitamin C and increasing non haem iron absorption pursuant to Article 14 of Regulation (EC) No 1924/2006. 2014. https://dx.doi.org/10.2903/j.efsa.2014.3514.
  22. Gillooly M., Bothwell T.H., Torrance J.D. et al. The effects of organic acids, phytates and polyphenols on the absorption of iron from vegetables. Br J Nutr. 1983; 49(3): 331–42. https://dx.doi.org/10.1079/bjn19830042.
  23. Derman D.P., Bothwell T.H., Torrance J.D. et al. Iron absorption from maize (Zea mays) and sorghum (Sorghum vulgare) beer. Br J Nutr. 1980; 43(2): 271–79. https://dx.doi.org/10.1079/bjn19800090.
  24. Charlton R.W., Jacobs P., Seftel H., Bothwell T.H. E-ect of alcohol on iron absorption. Br Med J. 1964; 2(5422): 1427–29. https://dx.doi.org/10.1136/bmj.2.5422.1427.
  25. Scotet V., Merour M.C., Mercier A.Y. et al. Hereditary hemochromatosis: E-ect of excessive alcohol consumption on disease expression in patients homozygous for the C282Y mutation. Am J Epidemiol. 2003; 158(2): 129–34. https://dx.doi.org/10.1093/aje/kwg123.
  26. Wallace K.L., Curry S.C., Lo Vecchio F., Raschke R.A. Effect of magnesium hydroxide on iron absorption following simulated mild iron overdose in human subjects. Acad Emerg Med. 1998; 5(10): 961–65. https://dx.doi.org/10.1111/j.1553-2712.1998.tb02771.x.
  27. Layrisse M., Garcia-Casal M.N., Solano L. et al. Iron bioavailability in humans from break fasts enriched with iron bis-glycinechelate, phytates and polyphenols. J Nutr. 2000; 130(9): 2195–99. https://dx.doi.org/10.1093/jn/130.9.2195.
  28. Brouns F. Phytic acid and whole grains for health controversy. Nutrients. 2022; 14(1): 25. https://doi.org/10.3390/nu14010025.
  29. Hurrell R.F., Reddy M., Cook J.D. Inhibition of non-haem iron absorption in man by polyphenolic-containing beverages. Br J Nutr. 1999; 81(4): 289–95.
  30. Munoz M., Gomez-Ramirez S., Besser M. et al. Current misconceptions in diagnosis and management of iron deficiency. Blood Transfus. 2017; 15(5): 422–437. https://dx.doi.org/10.2450/2017.0113-17.
  31. Billesbolle C.B., Azumaya C.M., Kretsch R.C. et al. Structure of hepcidin-bound ferroportin reveals iron homeostatic mechanisms. Nature. 2020; 586(7831): 807–11. https://dx.doi.org/10.1038/s41586-020-2668-z.
  32. Andriopoulos B. Jr., Corradini E., Xia Y. et al. BMP6 is a key endogenous regulator of hepcidin expression and iron metabolism. Nat Genet. 2009; 41(4): 482–87. https://dx.doi.org/10.1038/ng.335.
  33. Shah Y.M., Matsubara T., Ito S. et al. Intestinal hypoxia-inducible transcription factors are essential for iron absorption following iron deficiency. Cell Metab. 2009; 9(2): 152–64. https://dx.doi.org/10.1016/j.cmet.2008.12.012.
  34. Weiss G., Ganz T., Goodnough L.T. Anemia of inflammation. Blood. 2019; 133(1): 40–50. https://dx.doi.org/10.1182/blood-2018-06-856500.
  35. Benyamin B., Ferreira M.A., Willemsen G. et al. Common variants in TMPRSS6 are associated with iron status and erythrocyte volume. Nat Genet. 2009; 41(11): 1173–75. https://dx.doi.org/10.1038/ng.456.
  36. Anderson E.R., Taylor M., Xue X. et al. Intestinal HIF2 alpha promotes tissue-iron accumulation in disorders of iron overload with anemia. Proc Natl Acad Sci U S A. 2013; 110(50): E4922–30. https://dx.doi.org/10.1073/pnas.1314197110.
  37. Fung E., Nemeth E. Manipulation of the hepcidin pathway for therapeutic purposes. Haematologica. 2013; 98(11): 1667–76. https://dx.doi.org/10.3324/гематол.2013.084624.
  38. Komrokji R., Garcia-Manero G., Ades L. et al. Sotatercept with long-term extension for the treatment of anaemia in patients with lower-risk myelodysplastic syndromes: A phase 2, dose-ranging trial. Lancet Haematol. 2018; 5(2): e63–e72. https://dx.doi.org/10.1016/S2352-3026(18)30002-4.
  39. Gomez-Ramirez S., Brilli E., Tarantino G., Munoz M. Sucrosomial® iron: A new generation iron for improving oral supplementation. Pharmaceuticals (Basel). 2018; 11(4): 97. https://dx.doi.org/10.3390/ph11040097.
  40. Fabiano A., Brilli E., Mattii L. et al. Ex vivo and in vivo study of Sucrosomial® iron intestinal absorption and bioavailability. Int J Mol. Sci. 2018; 19(9): 2722. https://dx.doi.org/10.3390/ijms19092722.
  41. Tarantino G., Brilli E., Zambito Y. et al. Sucrosomial® iron: A new highly bioavailable oral iron supplement. Blood. 2015; 126: 4561–62. https://dx.doi.org/10.3390/ph11040097.
  42. Asperti A., Gryzik M., Brilli E. et al. Sucrosomial® iron supplementation in mice: Effects on blood parameters, hepcidin, and inflammation. Nutrients. 2018; 10(10): 1349. https://dx.doi.org/10.3390/nu10101349.
  43. Fedorovа T.A., Borzykina O.M., Bakuridze E.M. et al. Correction of iron deficiency anemia in patients with gynecological diseases using liposomal iron. Ginekologiya = Gynecology. 2017; 19(1): 68–73 (In Russ.). EDN: YZGCQB.
  44. Kedrova A.G., Greyan T.A., Vanke N.S., Krasilnikov S.E. Anemia in patients with tumors of the female reproductive system. Opukholi zhenskoy reproduktivnoy sistemy = Tumors of Female Reproductive System. 2019; 15(3): 31–36 (In Russ.). https://dx.doi.org/10.17650/1994-4098-2019-15-3-31-36. EDN: ZXIYTH.
  45. Sakhin V.T., Grigoriev M.A., Kryukov E.V. et al. Pathogenetic features of anemia of chronic diseases in patients with malignant neoplasms and rheumatic pathology. Onkogematologiya = Oncohematology. 2020; 15(4): 82–90 (In Russ.). https://dx.doi.org/10.17650/1818-8346-2020-15-4-82-90. EDN: KEGDEJ.
  46. Stuklov N.I., Basiladze I.G., Kovalchuk M.S. et al. New options in management of iron-deficiency syndromes in inflammatory bowel disease. Eksperimental’naya i klinicheskaya gastroenterologiya = Experimental and Clinical Gastroenterology. 2019; (2): 143–150 (In Russ.). https://dx.doi.org/10.31146/1682-8658-ecg-162-2-143-150. EDN: KMWVWF.
  47. Pisani A., Riccio E., Sabbatini M. et al. Effect of oral liposomal iron versus intravenous iron for treatment of iron deficiency anaemia in CKD patients: A randomized trial. Nephrol Dial Transplant. 2015; 30(4): 645–52. https://dx.doi.org/10.1093/ndt/gfu357.
  48. Karavidas A., Trogkanis E., Lazaros G. et al. Oral sucrosomial iron improves exercise capacity and quality of life in heart failure with reduced ejection fraction and iron deficiency: a non-randomized, open-label, proof-of-concept study. Eur J Heart Fail. 2021; 23(4): 593–97. https://dx.doi.org/10.1002/ejhf.2092.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2023 Bionika Media

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies