Antithrombotic therapy in patients with diabetes mellitus

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Diabetes mellitus prevalence is increasing worldwide, followed by growing mortality from cardiovascular diseases. Antithrombotic therapy is a key component of pharmacological cardiovascular prevention for patients with diabetes. Patients with diabetes have enhanced thrombotic risk, attributed to chronic inflammation and hypercoagulable status. The aim of this review is to discuss current antithrombotic approaches in diabetes according to the latest guidelines and studies.

Full Text

Restricted Access

About the authors

Elizaveta A. Rogozhkina

National Medical Research Center for Therapy and Preventive Medicine of the Ministry of Healthcare of Russia

Author for correspondence.
Email: lizarogozkina@gmail.com
ORCID iD: 0000-0001-8993-7892

cardiologist, junior researcher at the Laboratory of cardiac imaging, autonomic regulation and somnology, National Medical Research Center for Therapy and Preventive Medicine of the Ministry of Healthсare of Russia

Russian Federation, Moscow

Anna A. Ivanova

National Medical Research Center for Therapy and Preventive Medicine of the Ministry of Healthcare of Russia

Email: annaivanova12121@yandex.ru
ORCID iD: 0000-0002-2812-959X

cardiologist, junior researcher at the Department of fundamental and applied aspects of obesity, National Medical Research Center for Therapy and Preventive Medicine of the Ministry of Healthсare of Russia

Russian Federation, Moscow

Mikhail Y. Novikov

National Medical Research Center for Therapy and Preventive Medicine of the Ministry of Healthcare of Russia

Email: m1kha1lN@yandex.ru
ORCID iD: 0000-0002-0876-7201

clinical resident specializing in cardiology, National Medical Research Center for Therapy and Preventive Medicine of the Ministry of Healthсare of Russia

Russian Federation, Moscow

Natalya V. Drogashevskaya

National Medical Research Center for Therapy and Preventive Medicine of the Ministry of Healthcare of Russia

Email: ndrogash14@gmail.com
ORCID iD: 0000-0002-2083-4454

clinical resident specializing in therapy, National Medical Research Center for Therapy and Preventive Medicine of the Ministry of Healthсare of Russia

Russian Federation, Moscow

Kamila S. Samatova

National Medical Research Center for Therapy and Preventive Medicine of the Ministry of Healthcare of Russia

Email: kamilasamatova@rambler.ru
ORCID iD: 0000-0001-7116-9805

clinical resident specializing in cardiology, National Medical Research Center for Therapy and Preventive Medicine of the Ministry of Healthсare of Russia

Russian Federation, Moscow

Valentina V. Bogodistaya

National Medical Research Center for Therapy and Preventive Medicine of the Ministry of Healthcare of Russia

Email: valentina.bogodistaya@yandex.ru
ORCID iD: 0009-0000-8727-8969

clinical resident specializing in therapy, National Medical Research Center for Therapy and Preventive Medicine of the Ministry of Healthсare of Russia

Russian Federation, Moscow

References

  1. Sarwar N., Gao P., Seshasai S.R. et al. Diabetes mellitus, fasting blood glucose concentration, and risk of vascular disease: a collaborative meta-analysis of 102 prospective studies. Lancet. 2010; 375(9733): 2215–22. https://dx.doi.org/10.1016/S0140-6736(10)60484-9.
  2. Patrono C., Morais J., Baigent C. et al. Antiplatelet agents for the treatment and prevention of coronary atherothrombosis. J Am Coll Cardiol. 2017; 70(14): 1760–76. https://dx.doi.org/10.1016/j.jacc.2017.08.037.
  3. Carrizzo A., Izzo C., Oliveti M. et al. The main determinants of diabetes mellitus vascular complications: Endothelial dysfunction and platelet hyperaggregation. Int J Mol Sci. 2018; 19(10): 2968. https://dx.doi.org/10.3390/ijms19102968.
  4. Pretorius E. Platelets as potent signaling entities in type 2 diabetes mellitus. Trends Endocrinol Metab. 2019; 30(8): 532–45. https://dx.doi.org/10.1016/j.tem.2019.05.003.
  5. Soma P., Swanepoel A.C., Du Plooy J.N. et al. Flow cytometric analysis of platelets type 2 diabetes mellitus reveals «angry» platelets. Cardiovasc Diabetol. 2016; 15: 52. https://dx.doi.org/10.1186/s12933-016-0373-x.
  6. Patrono C., Rocca B. Measurement of thromboxane biosynthesis in health and disease. Front Pharmacol. 2019; 10: 1244. https://dx.doi.org/10.3389/fphar.2019.01244.
  7. Бондаренко И.З., Ширшина И.А., Калашников В.Ю. Антитромботическая терапия после рентгеноэндоваскулярного лечения: есть ли особенности у больных сахарным диабетом? Терапевтический архив. 2014; 86(10): 103–108. [Bondarenko I.Z., Shirshina I.A., Kalashnikov V.Y. Antithrombotic therapy after X-ray endovascular treatment: Are there specific features in patients with diabetes mellitus? Terapevticheskiy arkhiv = Therapeutic Archive. 2014; 86(10): 103–108 (In Russ.)]. EDN: TGSDAN.
  8. Козиолова Н.А., Караваев П.Г., Веклич А.С. Выбор антитромботической терапии у больных ишемической болезнью сердца и сахарным диабетом 2-го типа. Кардиология. 2020; 60(4): 109–119. [Koziolova N.A., Karavaev P.G., Veklich A.S. Choosing antithrombotic therapy in patients with coronary heart disease and type 2 diabetes mellitus: How to reduce the risk of death. Kardiologiya = Cardiology. 2020; 60(4): 109–119 (In Russ.)]. https://dx.doi.org/10.18087/cardio.2020.4.n1042. EDN: ZRXYDL.
  9. Hunter R.W., Hers I. Insulin/IGF-1 hybrid receptor expression on human platelets: consequences for the effect of insulin on platelet function. J Thromb Haemost. 2009; 7(12): 2123–30. https://dx.doi.org/10.1111/j.1538-7836.2009.03637.x.
  10. Westein E., Hoefer T., Calkin A.C. Thrombosis in diabetes: a shear flow effect? Clin Sci (Lond). 2017; 131(12): 1245–60. https://dx.doi.org/10.1042/CS20160391.
  11. Vinik A.I., Erbas T., Park T.S. et al. Platelet dysfunction in type 2 diabetes. Diabetes Care. 2001; 24(8): 1476–85. https://dx.doi.org/10.2337/diacare.24.8.1476.
  12. Hernandez Vera R., Vilahur G., Ferrer-Lorente R. et al. Platelets derived from the bone marrow of diabetic animals show dysregulated endoplasmic reticulum stress proteins that contribute to increased thrombosis. Arterioscler Thromb Vasc Biol. 2012; 32(9): 2141–48. https://dx.doi.org/10.1161/ATVBAHA.112.255281.
  13. Wang Y., Beck W., Deppisch R. et al. Advanced glycation end products elicit externalization of phosphatidylserine in a subpopulation of platelets via 5-HT2A/2C receptors. Am J Physiol Cell Physiol. 2007; 293(1): C328–36. https://dx.doi.org/10.1152/ajpcell.00560.2006.
  14. Rocca B., Santilli F., Pitocco D. et al. The recovery of platelet cyclooxygenase activity explains interindividual variability in responsiveness to low-dose aspirin in patients with and without diabetes. J Thromb Haemost. 2012; 10(7): 1220–30. https://dx.doi.org/10.1111/j.1538-7836.2012.04723.x.
  15. Kearney K., Tomlinson D., Smith K., Ajjan R. Hypofibrinolysis in diabetes: A therapeutic target for the reduction of cardiovascular risk. Cardiovasc Diabetol. 2017; 16(1): 34. https://dx.doi.org/10.1186/s12933-017-0515-9.
  16. Vilahur G., Ben-Aicha S., Badimon L. New insights into the role of adipose tissue in thrombosis. Cardiovasc Res. 2017; 113(9): 1046–54. https://dx.doi.org/10.1093/cvr/cvx086.
  17. Vinik A.I., Erbas T., Park T.S. et al. Platelet dysfunction in type 2 diabetes. Diabetes Care. 2001; 24(8): 1476–85. https://dx.doi.org/10.2337/diacare.24.8.1476.
  18. Ferreiro J.L., Gomez-Hospital J.A., Angiolillo D.J. Platelet abnormalities in diabetes mellitus. Diab Vasc Dis Res. 2010; 7(4): 251–59. https://dx.doi.org/10.1177/1479164110383994.
  19. Alzahrani S.H., Ajjan R.A. Coagulation and fibrinolysis in diabetes. Diab Vasc Dis Res. 2010; 7(4): 260–73. https://dx.doi.org/10.1177/1479164110383723.
  20. Kim H.K., Kim J.E., Park S.H. et al. High coagulation factor levels and low protein C levels contribute to enhanced thrombin generation in patients with diabetes who do not have macrovascular complications. J Diabetes Complications. 2014; 28(3): 365–69. https://dx.doi.org/10.1016/j.jdiacomp.2014.01.006.
  21. Storey R.F. The long journey of individualizing antiplatelet therapy after acute coronary syndromes. Eur Heart J. 2020; 41(37): 3546–48. https://dx.doi.org/10.1093/eurheartj/ehaa644.
  22. Baigent C., Blackwell L., Collins R. et al. Aspirin in the primary and secondary prevention of vascular disease: Collaborative meta-analysis of individual participant data from randomised trials. Lancet 2009; 373(9678): 1849–60. https://dx.doi.org/10.1016/S0140-6736(09)60503-1.
  23. ASCEND Study Collaborative Group; Bowman L., Mafham M., Wallendszus K. et al. Effects of aspirin for primary prevention in persons with diabetes mellitus. N Engl J Med. 2018; 379(16): 1529–39. https://dx.doi.org/10.1056/NEJMoa1804988.
  24. Joseph P., Roshandel G., Gao P. et al. Fixed-dose combination therapies with and without aspirin for primary prevention of cardiovascular disease: An individual participant data meta-analysis. Lancet. 2021; 398(10306): 1133–46. https://dx.doi.org/10.1016/S0140-6736(21)01827-4.
  25. Parish S., Mafham M., Offer A. et al. Effects of aspirin on dementia and cognitive function in diabetic patients: The ASCEND trial. Eur Heart J. 2022; 43(21): 2010–19. https://dx.doi.org/10.1093/eurheartj/ehac179.
  26. Cainzos-Achirica M., Miedema M.D., McEvoy J.W. et al. Coronary artery calcium for personalized allocation of aspirin in primary prevention of cardiovascular disease in 2019: the MESA Study (Multi-Ethnic Study of Atherosclerosis). Circulation. 2020; 141(19): 1541–53. https://dx.doi.org/10.1161/CIRCULATIONAHA.119.045010.
  27. Jones W.S., Mulder H., Wruck L.M. et al. Comparative effectiveness of aspirin dosing in cardiovascular disease. N Engl J Med. 2021; 384(21): 1981–90. https://dx.doi.org/10.1056/NEJMoa2102137.
  28. Current-Oasis 7 Investigators; Mehta S.R., Bassand J.P., Chrolavicius S. et al. Dose comparisons of clopidogrel and aspirin in acute coronary syndromes. N Engl J Med. 2010; 363(10): 930–42. https://dx.doi.org/10.1056/NEJMoa0909475.
  29. Steg P.G., Bhatt D.L., Simon T. et al. Ticagrelor in patients with stable coronary disease and diabetes. N Engl J Med. 2019; 381(14): 1309–20. https://dx.doi.org/10.1056/NEJMoa1908077.
  30. Eikelboom J.W., Connolly S.J., Bosch J. et al. Rivaroxaban with or without aspirin in stable cardiovascular disease. N Engl J Med. 2017; 377(14): 1319–30. https://dx.doi.org/10.1056/NEJMoa1709118.
  31. Potpara T.S., Mujovic N., Proietti M. et al. Revisiting the effects of omitting aspirin in combined antithrombotic therapies for atrial fibrillation and acute coronary syndromes or percutaneous coronary interventions: Meta-analysis of pooled data from the PIONEER AF-PCI, RE-DUAL PCI, and AUGUSTUS trials. Europace. 2020; 22(1): 33–46. https://dx.doi.org/10.1093/europace/euz259.
  32. Gargiulo G., Goette A., Tijssen J. et al. Safety and efficacy outcomes of double vs. Triple antithrombotic therapy in patients with atrial fibrillation following percutaneous coronary intervention: A systematic review and meta-analysis of non-vitamin K antagonist oral anticoagulant-based randomized clinical trials. Eur Heart J. 2019; 40(46): 3757–67. https://dx.doi.org/10.1093/eurheartj/ehz732.
  33. James S., Angiolillo D.J., Cornel J.H. et al. Ticagrelor vs clopidogrel in patients with acute coronary syndromes and diabetes: A substudy from the PLATelet inhibition and patient Outcomes (PLATO) trial. Eur Heart J. 2010; 31(24): 3006–16. https://dx.doi.org/10.1093/eurheartj/ehq325.
  34. Wiviott S.D., Braunwald E., McCabe C.H. et al. Prasugrel versus clopidogrel in patients with acute coronary syndromes. N Engl J Med. 2007; 357(20): 2001–15. https://dx.doi.org/10.1056/NEJMoa0706482.
  35. Erlinge D., Varenhorst C., Braun O.O. et al. Patients with poor responsiveness to thienopyridine treatment or with diabetes have lower levels of circulating active metabolite, but their platelets respond normally to active metabolite added ex vivo. J Am College Cardiol. 2008; 52(24): 1968–77. https://dx.doi.org/10. 1016/j.jacc.2008.07.068.
  36. Schupke S., Neumann F-J., Menichelli M. et al. Ticagrelor or prasugrel in patients with acute coronary syndromes. N Engl J Med. 2019; 381(16): 1524–34. https://dx.doi.org/10.1056/NEJMoa1908973.
  37. Bonaca M.P., Bhatt D.L., Cohen M. et al. Long-term use of ticagrelor in patients with prior myocardial infarction. N Engl J Med. 2015; 372(19): 1791–800. https://dx.doi.org/10.1056/NEJMoa1500857.
  38. Khan S.U., Singh M., Valavoor S. et al. Dual antiplatelet therapy after percutaneous coronary intervention and drug-eluting stents: A systematic review and network meta-analysis. Circulation. 2020; 142(15): 1425–36. https://dx.doi.org/10.1161/CIRCULATIONAHA.120.046308
  39. Mauri L., Kereiakes D.J., Yeh R.W. et al. Twelve or 30 months of dual antiplatelet therapy after drug-eluting stents. N Engl J Med. 2014; 371(23): 2155–66. https://dx.doi.org/10.1056/NEJMoa1409312.
  40. Anand S.S., Bosch J., Eikelboom J.W. et al. Rivaroxaban with or without aspirin in patients with stable peripheral or carotid artery disease: An international, randomised, double-blind, placebo-controlled trial. Lancet. 2018; 391(10117): 219–29. https://dx.doi.org/10.1016/S0140-6736(17)32409-1.
  41. Hein R., Gross L., Aradi D. et al. Diabetes and outcomes following guided de-escalation of antiplatelet treatment in acute coronary syndrome patients undergoing percutaneous coronary intervention: a pre-specified analysis from the randomised TROPICAL-ACS trial. EuroIntervention. 2019; 15(6): e513–21. https://dx.doi.org/10.4244/EIJ-D-18-01077.
  42. Professional practice committee: Standards of medical care in Diabetes-2018. Diabetes Care. 2018; 41(Suppl 1): S3. https://dx.doi.org/10.2337/dc18-Sppc01.
  43. Soriano L.C., Fowkes F G.R., Allum A.M. et al. Predictors of bleeding in patients with symptomatic peripheral artery disease: A cohort study using the health improvement network in the United Kingdom. Thromb Haemost. 2018; 118(6): 1101–12. https://dx.doi.org/10.1055/s-0038-1646923.
  44. Scally B., Emberson J.R., Spata E. et al. Effects of gastroprotectant drugs for the prevention and treatment of peptic ulcer disease and its complications: A meta-analysis of randomised trials. Lancet Gastroenterol Hepatol. 2018; 3(4): 231–41. https://dx.doi.org/10.1016/S2468-1253(18)30037-2.
  45. Moayyedi P., Eikelboom J.W., Bosch J. et al. Pantoprazole to prevent gastroduodenal events in patients receiving rivaroxaban and/or aspirin in a randomized, double-blind, placebo-controlled trial. Gastroenterology. 2019; 157(2): 403–12.e5. https://dx.doi.org/10.1053/j.gastro.2019.04.041.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. Antithrombotic therapy in patients with diabetes mellitus and acute or chronic coronary syndrome after myocardial revascularization

Download (269KB)

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies