Levels of interleukins 1β, 23, osteoprotegerin, receptor activator of nuclear factor-kappa B ligand in the dynamics of hypoxytherapy performing in female patients with autoimmune thyroiditis

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Chronic autoimmune thyroiditis (AIT) is a common autoimmune pathology. Replacement therapy with thyroid hormone drugs (HRT) does not always normalize the patient’s condition, so the introduction of innovative methods of treating AIT with hypothyroidism, which includes interval hypoxic therapy, is becoming quite actual.

The aim: to study the effects of interval hypoxytherapy at the levels of interleukin 1β (IL-1β), IL-23, osteoprotegerin (OPG) and ligand of nuclear factor κB receptor activator (RANKL) in AIT female patients with hypothyroidism.

Material and methods. 136 females with initially diagnosed AIT and hypothyroidism received HRT for 12 months. Among them there were 68 participants, who, along with HRT, underwent sessions of interval hypoxic therapy. Serum levels of IL-1β, IL-23, OPG and RANKL were measured.

Results. Both isolated HRT and its combination with hypoxytherapy did not lead to significant changes in the level of OPG, RANKL and the value of their ratio in presence of a statistically significant decrease (p <0,001) in the initially increased concentration of IL-1β to the level of conditionally healthy women. Regardless of interval hypoxytherapy use, there was a decrease (p <0,0001) of the initially elevated IL-23 concentrations to the level of conditionally healthy females when using hypoxytherapy, and to a level higher than the value of the control group (p <0,01) in presence of isolated HRT.

Conclusion. 12-month course of HRT, either alone or in combination with interval hypoxytherapy, does not affect OPG and RANKL production. Regardless of the prescription of hypoxytherapy, the decrease of IL-1β and IL-23 levels (p <0,001) takes place in female patients. At the same time, normalization of IL-1β concentrations is observed in all females with AIT, and IL-23 levels reach control values only if interval hypoxytherapy is used.

Full Text

Restricted Access

About the authors

Grigory A. Ignatenko

M. Gorky Donetsk State Medical University

Author for correspondence.
Email: prop-vnutr-medicina@dnmu.ru
ORCID iD: 0000-0003-3611-1186

MD, Professor, Corresponding Member of National Academy of Medical Sciences of Ukraine, Head of the Department of Propaedeutics of Internal Diseases

Russian Federation, Donetsk

Eduard A. Maylyan

M. Gorky Donetsk State Medical University

Email: eduardmailyan095@gmail.com
ORCID iD: 0000-0003-2845-7750

MD, Professor, Head of the Department of Microbiology, Virology, Immunology and Allergology

Russian Federation, Donetsk

Tatyana S. Ignatenko

M. Gorky Donetsk State Medical University

Email: prop-vnutr-medicina@dnmu.ru
ORCID iD: 0009-0001-2138-2277

MD, Professor, Professor of the Department of Propaedeutics of Internal Diseases

Russian Federation, Donetsk

Denis A. Lesnichenko

M. Gorky Donetsk State Medical University

Email: lesnichenko.da@yandex.com
ORCID iD: 0000-0003-4465-261X

PhD in Medical Sciences, Associate Professor, Associate Professor of the Department of Microbiology, Virology, Immunology and Allergology

Russian Federation, Donetsk

Yanina S. Valigun

M. Gorky Donetsk State Medical University

Email: valigun.kdl@mail.ru
ORCID iD: 0009-0009-4364-1995

Assistant at the Department of Transplantology and Clinical Laboratory Diagnostics

Russian Federation, Donetsk

Svetlana V. Tumanova

M. Gorky Donetsk State Medical University

Email: sv.tumanova@mail.ru
ORCID iD: 0009-0006-5316-9813

PhD in Medical Sciences, Associate Professor, Associate Professor of the Department of Internal Medicine No. 2

Russian Federation, Donetsk

References

  1. Mincer D.L., Jialal I. Hashimoto Thyroiditis. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2023 Jan.
  2. Ihnatowicz P., Drywien M., Wator P., Wojsiat J. The importance of nutritional factors and dietary management of Hashimoto’s thyroiditis. Ann Agric Environ Med. 2020; 27(2): 184–93. https://dx.doi.org/10.26444/aaem/112331.
  3. Biondi B., Cappola A.R., Cooper D.S. Subclinical hypothyroidism: A review. JAMA. 2019; 322(2): 153–60. https://dx.doi.org/10.1001/jama.2019.9052.
  4. Feldt-Rasmussen U. Hashimoto’s thyroiditis as a risk factor for thyroid cancer. Curr Opin Endocrinol Diabetes Obes. 2020; 27(5): 364–71. https://dx.doi.org/10.1097/MED.0000000000000570.
  5. Wu J., Huang H., Yu X. How does Hashimoto’s thyroiditis affect bone metabolism? Rev Endocr Metab Disord. 2023; 24(2): 191–205. https://dx.doi.org/10.1007/s11154-022-09778-x.
  6. Lu Q., Luo X., Mao C. et al. Caveolin-1 regulates autophagy activity in thyroid follicular cells and is involved in Hashimoto’s thyroiditis disease. Endocr J. 2018; 65(9): 893–901. https://dx.doi.org/10.1507/endocrj.EJ18-0003.
  7. Lee S.A., Stetten N.E., Anton S.D. Patient perspectives on the treatment for Hashimoto’s thyroiditis: A qualitative analysis. Health Prim Car. 2018; 2(4): 1–5. https://dx.doi.org/10.15761/HPC.1000141.
  8. Kumar H., Choi D.K. Hypoxia inducible factor pathway and physiological adaptation: A cell survival pathway? Mediators Inflamm. 2015; 2015: 584758. https://dx.doi.org/10.1155/2015/584758.
  9. Chen P.S, Chiu W.T., Hsu P.L. et al. Pathophysiological implications of hypoxia in human diseases. J Biomed Sci. 2020; 27(1): 63. https://dx.doi.org/10.1186/s12929-020-00658-7.
  10. Gangwar A., Paul S., Ahmad Y., Bhargava K. Intermittent hypoxia modulates redox homeostasis, lipid metabolism associated inflammatory processes and redox post-translational modifications: Benefits at high altitude. Sci Rep. 2020; 10(1): 7899. https://dx.doi.org/10.1038/s41598-020-64848-x.
  11. Игнатенко Г.А. Дубовая А.В., Науменко Ю.В. Возможности применения нормобарической гипокситерапии в терапевтической и педиатрической практиках. Российский вестник перинатологии и педиатрии. 2022; 67(6): 46–53. [Ignatenko G.A., Dubovaya A.V., Naumenko Yu.V. Treatment potential of normobaric hypoxic therapy in therapeutic and pediatric practice. Rossiyskiy vestnik perinatologii i pediatrii = Russian Bulletin of Perinatology and Pediatrics. 2022; 67(6): 46–53 (In Russ.)]. https://dx.doi.org/10.21508/1027-4065-2022-67-6-46-53. EDN: PWABPR.
  12. Игнатенко Г.А., Майлян Э.А., Игнатенко Т.С., Капанадзе Г.Д. Влияние гипокситерапии на содержание аутоантител к антигенам щитовидной железы у женщин с аутоиммунным тиреоидитом. Медико-социальные проблемы семьи. 2022; 27(3): 46–51. [Ignatenko G.A., Maylyan E.A., Ignatenko T.S., Kapanadze G.D. The influence of hypoxitherapy on the content of autoantibodies to thyroid antigens in women with autoimmune thyroiditis. Mediko-sotsial’nyye problemy sem’i = Medical and Social Problems of Family. 2022; 27(3): 46–51 (In Russ.)]. EDN: YGASKQ.
  13. Игнатенко Г.А., Денисова Е.М., Сергиенко Н.В. Гипокситерапия как перспективный метод повышения эффективности комплексного лечения коморбидной патологии. Вестник неотложной и восстановительной хирургии. 2021; 6(4): 73–80. [Ignatenko G.A., Denisova E.M., Sergienko N.V. Hypoxytherapy as a prospective method of increasing the effectiveness of complex treatment of comorbid pathology. Vestnik neotlozhnoy i vosstanovitel’noy khirurgii = Bulletin of Urgent and Recovery Surgery. 2021; 6(4): 73–80 (In Russ.)]. EDN: SMZZQM.
  14. Kayser B., Verges S. Hypoxia, energy balance and obesity: From pathophysiological mechanisms to new treatment strategies. Obes Rev. 2013; 14(7): 579–92. https://dx.doi.org/10.1111/obr.12034.
  15. Camacho-Cardenosa M., Camacho-Cardenosa A., Timon R. et al. Can hypoxic conditioning improve bone metabolism? A systematic review. Int J Environ Res Public Health. 2019; 16(10): 1799. https://dx.doi.org/10.3390/ijerph16101799.
  16. Musutova M., Weiszenstein M., Koc M., Polak J. Intermittent hypoxia stimulates lipolysis, but inhibits differentiation and de novo lipogenesis in 3T3-L1 cells. Metab Syndr Relat Disord. 2020; 18(3): 146–53. https://dx.doi.org/10.1089/met.2019.0112.
  17. Park H.Y., Jung W.S., Kim J. et al. Changes in the paradigm of traditional exercise in obesity therapy and application of a new exercise modality: A narrative review article. Iran J Public Health. 2019; 48(8): 1395–404.
  18. Radziejowska M. Efficiency of adaptation to hypoxic hypoxia in a course of artificial climatetherapy in correction of the hormonal status at thyroid gland hypofunction at children. Journal of Education, Health and Sport. 2018; 8(10): 347–56. https://dx.doi.org/10.5281/zenodo.1501808
  19. Абазова З.Х., Борукаева И.Х. Гипокситерапия в коррекции нейроиммуноэндокринных нарушений при аутоиммунном тиреоидите. Медицинский академический журнал. 2019; 19(S): 49–51. [Abazova Z.Kh., Borukaeva I.Kh. Hypoxic therapy in the correction of neuroimmunoendocrine disorders in autoimmune thyroiditis. Meditsinskiy akademicheskiy zhurnal = Medical Academic Journal. 2019; 19(S): 49–51 (In Russ.)]. https://dx.doi.org/10.17816/MAJ191S149-51. EDN: VWTIJM.
  20. Ruggeri R.M., Saitta S., Cristani M. et al. Serum interleukin-23 (IL-23) is increased in Hashimoto’s thyroiditis. Endocr J. 2014; 61(4): 359–63. https://dx.doi.org/10.1507/endocrj.ej13-0484.
  21. Abbasalizad Farhangi M., Tajmiri S. The correlation between inflammatory and metabolic parameters with thyroid function in patients with Hashimoto’s thyroiditis: The potential role of interleukin 23 (IL-23) and vascular endothelial growth factor (VEGF)-1. Acta Endocrinol (Buchar). 2018; 14(2): 163–68. https://dx.doi.org/10.4183/aeb.2018.163.
  22. Yang C., Zhong Z.F., Wang S.P. et al. HIF-1: Structure, biology and natural modulators. Chin J Nat Med. 2021; 19(7): 521–27. https://dx.doi.org/10.1016/S1875-5364(21)60051-1.
  23. Gao L., Chen Q., Zhou X., Fan L. The role of hypoxia-inducible factor 1 in atherosclerosis. J Clin Pathol. 2012; 65(10): 872–76. https://dx.doi.org/10.1136/jclinpath-2012-200828.
  24. Semenza G.L. Hypoxia-inducible factor 1 and cardiovascular disease. Annu Rev Physiol. 2014; 76: 39–56. https://dx.doi.org/10.1146/annurev-physiol-021113-170322.
  25. McGettrick A.F., O’Neill L.A.J. The Role of HIF in Immunity and Inflammation. Cell Metab. 2020; 32(4): 524–36. https://dx.doi.org/10.1016/j.cmet.2020.08.002.
  26. Fluck K., Breves G., Fandrey J., Winning S. Hypoxia-inducible factor 1 in dendritic cells is crucial for the activation of protective regulatory T cells in murine colitis. Mucosal Immunol. 2016; 9(2): 379–90. https://dx.doi.org/10.1038/mi.2015.67.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Dynamics of interleukin 1ß concentrations in serum in patients with autoimmune thyroiditis and hypothyroidism during 12 months of treatment

Download (379KB)
3. Fig. 2. Dynamics of interleukin 23 concentrations in serum in patients with autoimmune thyroiditis and hypothyroidism during 12 months of treatment

Download (435KB)

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies