Association between diabetes mellitus and lower respiratory tract and pulmonary diseases: scientific discussion

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Diabetes mellitus (DM) is a not fully studied chronic progressive metabolic disease with multiple complications such as diabetic foot syndrome, retinopathy, and nephropathy. In the context of diabetes, undeservedly little attention is paid to pulmonary lesions, especially if they lead to the development of diabetic lung or have an influence at the pathogenesis of a pulmonary pathology, such as chronic obstructive pulmonary disease or bronchial asthma. Current review summarizes ideas about the role of diabetes in the formation of pulmonary tissue pathology, especially in cases of idiopathic pulmonary fibrosis development in diabetes mellitus patients – a progressive disease with high mortality and limited treatment options.

Full Text

Restricted Access

About the authors

Sergey L. Babak

Russian University of Medicine of the Ministry of Healthcare of Russia

Author for correspondence.
Email: sergbabak@mail.ru
ORCID iD: 0000-0002-6571-1220
SPIN-code: 5213-3620
Scopus Author ID: 45560913500
ResearcherId: KAO-3183-2024

MD, Dr. Sci. (Medicine), pulmonologist, associate professor, professor of the Department of phthisiology and pulmonology of N.A. Semashko Research and Educational Institute of Clinical Medicine

Russian Federation, 127006, Moscow, 4 Dolgorukovskaya St.

Marina V. Gorbunova

Russian University of Medicine of the Ministry of Healthcare of Russia

Email: mgorb@mail.ru
ORCID iD: 0000-0002-2039-0072
SPIN-code: 6699-1286
Scopus Author ID: 45561369300

MD, Dr. Sci. (Medicine), pulmonologist, associate professor of the Department of phthisiology and pulmonology of N.A. Semashko Research and Educational Institute of Clinical Medicine

Russian Federation, 127006, Moscow, 4 Dolgorukovskaya St.

Ekaterina E. Gubernatorova

Russian University of Medicine of the Ministry of Healthcare of Russia

Email: creativeone@list.ru
ORCID iD: 0009-0009-4149-9497
SPIN-code: 9674-1515

MD, PhD (Medicine), endocrinologist, assistant at the Department of therapy and preventive medicine of N.A. Semashko Research and Educational Institute of Clinical Medicine

Russian Federation, 127006, Moscow, 4 Dolgorukovskaya St.

Andrey G. Malyavin

Russian University of Medicine of the Ministry of Healthcare of Russia

Email: maliavin@mail.ru
ORCID iD: 0000-0002-6128-5914
SPIN-code: 8264-5394
Scopus Author ID: 6701876872

MD, Dr. Sci. (Medicine), pulmonologist, professor of the Department of phthisiology and pulmonology of N.A. Semashko Research and Educational Institute of Clinical Medicine, chief external expert-pulmonologist of the Ministry of Healthcare of Russia in the Central Federal District

Russian Federation, 127006, Moscow, 4 Dolgorukovskaya St.

References

  1. Sun H., Saeedi P., Karuranga S. et al. IDF Diabetes Atlas: Global, regional and country-level diabetes prevalence estimates for 2021 and projections for 2045. Diabetes Res Clin Pract. 2022; 183: 109119. https://doi.org/10.1016/j.diabres.2021.109119. PMID: 34879977. PMCID: PMC11057359.
  2. NCD Countdown 2030 collaborators. NCD Countdown 2030: Worldwide trends in non-communicable disease mortality and progress towards Sustainable Development Goal target 3.4. Lancet. 2018; 392(10152): 1072–88. https://doi.org/10.1016/S0140-6736(18)31992-5. PMID: 30264707.
  3. [Harreiter J., Roden M. Diabetes mellitus: definition, classification, diagnosis, screening and prevention (Update 2023). Wien Klin Wochenschr. 2023; 135(Suppl 1): 7–17 (In German)]. https://doi.org/10.1007/s00508-022-02122-y. PMID: 37101021. PMCID: PMC10133036.
  4. Клинические рекомендации. Сахарный диабет 2 типа у взрослых. Российская ассоциация эндокринологов. Рубрикатор клинических рекомендаций Минздрава России. 2022. ID: 290. Доступ: https://cr.minzdrav.gov.ru/recomend/290_2 (дата обращения – 17.05.2024). [Clinical guidelines. Type 2 diabetes mellitus in adults. Russian Association of Endocrinologists. Rubricator of clinical recommendations of the Ministry of Healthcare of Russia. 2022. ID: 290. URL: https://cr.minzdrav.gov.ru/recomend/290_2 (date of access – 17.05.2024) (In Russ.)].
  5. Kaneto H., Kimura T., Obata A. et al. Multifaceted mechanisms of action of metformin which have been unraveled one after another in the long history. Int J Mol Sci. 2021; 22(5): 2596. https://doi.org/10.3390/ijms22052596. PMID: 33807522. PMCID: PMC7962041.
  6. Dai Y., Zhou S., Qiao L. et al. Non-apoptotic programmed cell deaths in diabetic pulmonary dysfunction: The new side of advanced glycation end products. Front Endocrinol (Lausanne). 2023; 14: 1126661. https://doi.org/10.3389/fendo.2023.1126661. PMID: 37964954. PMCID: PMC10641270.
  7. Zhang R.H., Zhou J.B., Cai Y.H. et al. Non-linear association between diabetes mellitus and pulmonary function: A population-based study. Respir Res. 2020; 21(1): 292. https://doi.org/10.1186/s12931-020-01538-2. PMID: 33148273. PMCID: PMC7641838.
  8. Cazzola M., Rogliani P., Ora J. et al. Hyperglycaemia and chronic obstructive pulmonary disease. Diagnostics (Basel). 2023; 13(21): 3362. https://doi.org/10.3390/diagnostics13213362. PMID: 37958258. PMCID: PMC10650064.
  9. Thinggaard B.S., Stokholm L., Davidsen J.R. et al. Diabetic retinopathy is a predictor of chronic respiratory failure: A nationwide register-based cohort study. Heliyon. 2023; 9(6): e17342. https://doi.org/10.1016/j.heliyon.2023.e17342. PMID: 37426795. PMCID: PMC10329134.
  10. Bejeshk M.A., Bagheri F., Salimi F., Rajizadeh M.A. The diabetic lung can be ameliorated by Citrullus colocynthis by reducing inflammation and oxidative stress in rats with type 1 diabetes. Evid Based Complement Alternat Med. 2023; 2023: 5176645. https://doi.org/10.1155/2023/5176645. PMID: 37520024. PMCID: PMC10382246.
  11. Zhang L., Jiang F., Xie Y. et al. Diabetic endothelial microangiopathy and pulmonary dysfunction. Front Endocrinol (Lausanne). 2023; 14: 1073878. https://doi.org/10.3389/fendo.2023.1073878. PMID: 37025413. PMCID: PMC10071002.
  12. Kolahian S., Leiss V., Nurnberg B. Diabetic lung disease: Fact or fiction? Rev Endocr Metab Disord. 2019; 20(3): 303–19. https://doi.org/10.1007/s11154-019-09516-w. PMID: 31637580. PMCID: PMC7102037.
  13. Kopf S., Kumar V., Kender Z. et al. Diabetic pneumopathy – a new diabetes-associated complication: Mechanisms, consequences and treatment considerations. Front Endocrinol (Lausanne). 2021; 12: 765201. https://doi.org/10.3389/fendo.2021.765201. PMID: 34899603. PMCID: PMC8655305.
  14. Murakami T., Inagaki N., Kondoh H. Cellular senescence in diabetes mellitus: distinct senotherapeutic strategies for adipose tissue and pancreatic β cells. Front Endocrinol (Lausanne). 2022; 13: 869414. https://doi.org/10.3389/fendo.2022.869414. PMID: 35432205. PMCID: PMC9009089.
  15. Sorensen G.L. Surfactant protein D in respiratory and non-respiratory diseases. Front Med (Lausanne). 2018; 5: 18. https://doi.org/10.3389/fmed.2018.00018. PMID: 29473039. PMCID: PMC5809447.
  16. Yuenyongchaiwat K., Boonsinsukh R. Type 2 diabetes mellitus related to decreased peripheral and respiratory muscle strength in sarcopenic Thai elderly. Curr Aging Sci. 2021; 14(3): 235–41. https://doi.org/10.2174/1874609814666210715141903. PMID: 34269671. PMCID: PMC9912336.
  17. Schuyler M.R., Niewoehner D.E., Inkley S.R., Kohn R. Abnormal lung elasticity in juvenile diabetes mellitus. Am Rev Respir Dis. 1976; 113(1): 37–41. https://doi.org/10.1164/arrd.1976.113.1.37. PMID: 1247213.
  18. Davis W.A., Knuiman M., Kendall P. et al; Fremantle Diabetes Study. Glycemic exposure is associated with reduced pulmonary function in type 2 diabetes: The Fremantle Diabetes Study. Diabetes Care. 2004; 27(3): 752–57. https://doi.org/10.2337/diacare.27.3.752. PMID: 14988297.
  19. McKeever T.M., Weston P.J., Hubbard R., Fogarty A. Lung function and glucose metabolism: An analysis of data from the Third National Health and Nutrition Examination Survey. Am J Epidemiol. 2005; 161(6): 546–56. https://doi.org/10.1093/aje/kwi076. PMID: 15746471.
  20. Anandhalakshmi S., Manikandan S., Ganeshkumar P., Ramachandran C. Alveolar gas exchange and pulmonary functions in patients with type II diabetes mellitus. J Clin Diagn Res. 2013; 7(9): 1874–77. https://doi.org/10.7860/JCDR/2013/6550.3339. PMID: 24179886. PMCID: PMC3809625.
  21. Yeh H.C., Punjabi N.M., Wang N.Y. et al. Cross-sectional and prospective study of lung function in adults with type 2 diabetes: The Atherosclerosis Risk in Communities (ARIC) study. Diabetes Care. 2008; 31(4): 741–46. https://doi.org/10.2337/dc07-1464. PMID: 18056886. PMCID: PMC2773203.
  22. Diez-Manglano J., Asìn Samper U. Pulmonary function tests in type 2 diabetes: A meta-analysis. ERJ Open Res. 2021; 7(1): 00371–2020. https://doi.org/10.1183/23120541.00371-2020. PMID: 33569495. PMCID: PMC7861023.
  23. Sharma A., Sharma A., Chauhan R. Spirometric lung functions in type 2 diabetes mellitus: A hospital-based study. Cureus. 2023; 15(5): e38919. https://doi.org/10.7759/cureus.38919. PMID: 37309345. PMCID: PMC10257798.
  24. Rajput S., Parashar R., Sharma J.P. et al. Assessment of pulmonary functions and dysfunctions in type ii diabetes mellitus: A comparative cross-sectional study. Cureus. 2023; 15(2): e35081. https://doi.org/10.7759/cureus.35081. PMID: 36945284. PMCID: PMC10024785.
  25. Scano G., Seghieri G., Mancini M. et al. Dyspnoea, peripheral airway involvement and respiratory muscle effort in patients with type I diabetes mellitus under good metabolic control. Clin Sci (Lond). 1999; 96(5): 499–506. PMID: 10209082.
  26. Kim J.H. The Association between pulmonary functions and incident diabetes: Longitudinal analysis from the Ansung cohort in Korea (Diabetes Metab J 2020; 44: 699–710). Diabetes Metab J. 2020; 44(6): 940–41. https://doi.org/10.4093/dmj.2020.0247. PMID: 33389962. PMCID: PMC7801762.
  27. Mameli C., Ghezzi M., Mari A. et al. The diabetic lung: Insights into pulmonary changes in children and adolescents with type 1 diabetes. Metabolites. 2021; 11(2): 69. https://doi.org/10.3390/metabo11020069. PMID: 33530418. PMCID: PMC7912250.
  28. Nesti L., Pugliese N.R., Sciuto P., Natali A. Type 2 diabetes and reduced exercise tolerance: A review of the literature through an integrated physiology approach. Cardiovasc Diabetol. 2020; 19(1): 134. https://doi.org/10.1186/s12933-020-01109-1. PMID: 32891175. PMCID: PMC7487838.
  29. Nishimura M., Miyamoto K., Suzuki A. et al. Ventilatory and heart rate responses to hypoxia and hypercapnia in patients with diabetes mellitus. Thorax. 1989; 44(4): 251–57. https://doi.org/10.1136/thx.44.4.251. PMID: 2763226. PMCID: PMC461784.
  30. Schubert L., Laroche S., Hartemann A. et al. Impaired hypoxic ventilatory drive induced by diabetic autonomic neuropathy, a cause of misdiagnosed severe cardiac events: Brief report of two cases. BMC Cardiovasc Disord. 2021; 21(1): 140. https://doi.org/10.1186/s12872-021-01944-4. PMID: 33731006. PMCID: PMC7967959.
  31. Van Eetvelde B.L.M., Cambier D., Vanden Wyngaert K. et al. The influence of clinically diagnosed neuropathy on respiratory muscle strength in type 2 diabetes mellitus. J Diabetes Res. 2018; 2018: 8065938. https://doi.org/10.1155/2018/8065938. PMID: 30622971. PMCID: PMC6304822.
  32. Ivanov S.V., Rose K.L., Colon S. et al. Mechanism of peroxidasin inactivation in hyperglycemia: Heme damage by reactive oxygen species. Biochem Biophys Res Commun. 2023; 689: 149237. https://doi.org/10.1016/j.bbrc.2023.149237. PMID: 37984175. PMCID: PMC10702573.
  33. Berg A.K., Svensson J., Thyssen J.P. et al. No associations between type 1 diabetes and atopic dermatitis, allergic rhinitis, or asthma in childhood: A nationwide Danish case-cohort study. Sci Rep. 2023; 13(1): 19933. https://doi.org/10.1038/s41598-023-47292-5. PMID: 37968327. PMCID: PMC10652009.
  34. Kondrashova A., Seiskari T., Ilonen J. et al. The “Hygiene hypothesis” and the sharp gradient in the incidence of autoimmune and allergic diseases between Russian Karelia and Finland. APMIS. 2013; 121(6): 478–93. https://doi.org/10.1111/apm.12023. PMID: 23127244.
  35. Sgrazzutti L., Sansone F., Attanasi M. et al. Coaggregation of asthma and type 1 diabetes in children: A narrative review. Int J Mol Sci. 2021; 22(11): 5757. https://doi.org/10.3390/ijms22115757. PMID: 34071190. PMCID: PMC8198343.
  36. Rachmiel M., Bloch O., Bistritzer T. et al. TH1/TH2 cytokine balance in patients with both type 1 diabetes mellitus and asthma. Cytokine. 2006; 34(3–4): 170–76. https://doi.org/10.1016/j.cyto.2006.04.012. PMID: 16765604.
  37. Torres R.M., Souza M.D.S., Coelho A.C.C. et al. Association between asthma and type 2 diabetes mellitus: Mechanisms and impact on asthma control – a literature review. Can Respir J. 2021; 2021: 8830439. https://doi.org/10.1155/2021/8830439. PMID: 33520042 PMCID: PMC7817304.
  38. Dumas O., Arroyo A.C., Faridi M.K. et al. Cohort study of maternal gestational weight gain, gestational diabetes, and childhood asthma. Nutrients. 2022; 14(23): 5188. https://doi.org/10.3390/nu14235188. PMID: 36501218. PMCID: PMC9741125.
  39. Bartziokas K., Papaioannou A.I., Drakopanagiotakis F. et al. Unraveling the link between insulin resistance and bronchial asthma. Biomedicines. 2024; 12(2): 437. https://doi.org/10.3390/biomedicines12020437. PMID: 38398039. PMCID: PMC10887139.
  40. Park S.S., Perez Perez J.L., Perez Gandara B. et al. Mechanisms linking COPD to type 1 and 2 diabetes mellitus: Is there a relationship between diabetes and COPD? Medicina (Kaunas). 2022; 58(8): 1030. https://doi.org/10.3390/medicina58081030. PMID: 36013497. PMCID: PMC9415273.
  41. Katsiki N., Steiropoulos P., Papanas N., Mikhailidis D.P. Diabetes mellitus and chronic obstructive pulmonary disease: An overview. Exp Clin Endocrinol Diabetes. 2021; 129(10): 699–704. https://doi.org/10.1055/a-1038-3883. PMID: 31739346.
  42. Tian Y., Liu L., Li Y. et al. The impact of metabolic overweight/obesity phenotypes on unplanned readmission risk in patients with COPD: a retrospective cohort study. Front Physiol. 2023; 14: 1290611. https://doi.org/10.3389/fphys.2023.1290611. PMID: 38089474. PMCID: PMC10714943.
  43. Chen T., Bai L., Hu W. et al. Risk factors associated with late failure of noninvasive ventilation in patients with chronic obstructive pulmonary disease. Can Respir J. 2020; 2020: 8885464. https://doi.org/10.1155/2020/8885464. PMID: 33123301. PMCID: PMC7582075.
  44. Cazzola M., Rogliani P., Calzetta L. et al. Targeting mechanisms linking COPD to type 2 diabetes mellitus. Trends Pharmacol Sci. 2017; 38(10): 940–51. https://doi.org/10.1016/j.tips.2017.07.003. PMID: 28784329.
  45. Glaser S., Krüger S., Merkel M. et al. Chronic obstructive pulmonary disease and diabetes mellitus: A systematic review of the literature. Respiration. 2015; 89(3): 253–64. https://doi.org/10.1159/000369863. PMID: 25677307.
  46. Liang Z., Yang M., Xu C. et al. Effects and safety of metformin in patients with concurrent diabetes mellitus and chronic obstructive pulmonary disease: A systematic review and meta-analysis. Endocr Connect. 2022; 11(9): e220289. https://doi.org/10.1530/EC-22-0289. PMID: 35900801. PMCID: PMC9422254.
  47. Kang Q., Ren J., Cong J., Yu W. Diabetes mellitus and idiopathic pulmonary fibrosis: A Mendelian randomization study. BMC Pulm Med. 2024; 24(1): 142. https://doi.org/10.1186/s12890-024-02961-7. PMID: 38504175. PMCID: PMC10953180.
  48. Li C., Xiao Y., Hu J. et al. Associations between diabetes and idiopathic pulmonary fibrosis: A study-level pooled analysis of 26 million people. J Clin Endocrinol Metab. 2021; 106(11): 3367–80. https://doi.org/10.1210/clinem/dgab553. PMID: 34302736.
  49. Jovanovic D.M., Šterclová M., Mogulkoc N. et al.; EMPIRE Registry Investigators. Comorbidity burden and survival in patients with idiopathic pulmonary fibrosis: The EMPIRE registry study. Respir Res. 2022; 23(1): 135. https://doi.org/10.1186/s12931-022-02033-6. PMID: 35624513. PMCID: PMC9145164.
  50. Wang Y.T., Shen T.C., Lin C.L. et al. Real-world practice of idiopathic pulmonary fibrosis: Results from a 2000–2016 cohort. Open Med (Wars). 2023; 18(1): 20230852. https://doi.org/10.1515/med-2023-0852. PMID: 38025536. PMCID: PMC10655681.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Components of respiratory dysfunction in patients with diabetes mellitus*

Download (630KB)
3. Fig. 2. Schematic representation of respiratory pathology caused by hyperglycemia*

Download (483KB)
4. Fig. 3. Schematic representation of the action of insulin on lung tissue*

Download (387KB)
5. Fig. 4. Schematic representation of the formation of pulmonary fibrosis in patients with type 2 diabetes mellitus*

Download (543KB)

Copyright (c) 2024 Bionika Media

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies