Clinical and morphological features of the metabolic phenotype of osteoarthritis and personalized choice of hyaluronic acid product
- Authors: Teplyakova O.V.1,2, Zhilyakov A.V.1, Tsvetkova O.G.2
-
Affiliations:
- Ural State Medical University of the Ministry of Healthcare of Russia
- Medical association “Novaya bolnitsa” LLC
- Issue: Vol 11, No 8 (2025)
- Pages: 143-152
- Section: LECTURES
- URL: https://journals.eco-vector.com/2412-4036/article/view/696096
- DOI: https://doi.org/10.18565/therapy.2025.8.143-152
- ID: 696096
Cite item
Abstract
Osteoarthritis (OA) is a heterogeneous disease including various phenotypes and endotypes. OA metabolic phenotype is further subdivided into four endotypes, the development of which is associated with adipokine-mediated inflammation (1), lipotoxicity (2), exposure to advanced glycation end products (3), and mitochondrial dysfunction (4). These forms are associated with different biochemical mechanisms of disease development. Effective treatment of OA requires a personalized approach. Hyaluronic acid medicines play an important role in the treatment of this disease due to their ability to viscosupplement within a month of administration and anti-inflammatory activity lasting up to 6 months. The choice of a specific medicine largely depends on molecular weight of the active component. The advantage of combination hyaluronic acid medicines with different molecular weights (Flexotron® Ultra, Flexotron® Ultra M) for the metabolic phenotype of OA lays in their simultaneous action on mechanical damage of cartilage and relief of the inflammatory component of the disease.
Full Text
About the authors
Olga V. Teplyakova
Ural State Medical University of the Ministry of Healthcare of Russia; Medical association “Novaya bolnitsa” LLC
Author for correspondence.
Email: oteplyakova69@gmail.com
ORCID iD: 0000-0003-2114-0419
SPIN-code: 3208-8679
MD, Dr. Sci. (Medicine), professor of the Department of outpatient therapy, head of the Center of Clinical Rheumatology
Russian Federation, Yekaterinburg; YekaterinburgAndrey V. Zhilyakov
Ural State Medical University of the Ministry of Healthcare of Russia
Email: doctor-zhilyakov@rambler.ru
ORCID iD: 0000-0003-1261-3712
SPIN-code: 2275-0696
MD, Dr. Sci. (Medicine), associate professor of the Department of traumatology and orthopedics, head of the clinic of traumatology and orthopedics, Yekaterinburg Medical Center LLC
Russian Federation, YekaterinburgOlga G. Tsvetkova
Medical association “Novaya bolnitsa” LLC
Email: tsvetkova.og.work@gmail.com
ORCID iD: 0009-0006-6301-9886
MD, rheumatologist
Russian Federation, YekaterinburgReferences
- Berenbaum F, Walker C. Osteoarthritis and inflammation: A serious disease with overlapping phenotypic patterns. Postgrad Med. 2020;132(4):377–84. PMID: 32100608. https://doi.org/10.1080/00325481.2020.1730669
- Roemer F, Jarraya M, Collins J, Kwoh CK, Hayashi D, Hunter DJ, Guermazi A. Structural phenotypes of knee osteoarthritis: Potential clinical and research relevance. Skeletal Radiol. 2023;52(11):2021–30. PMID: 36161341. PMCID: PMC10509066. https://doi.org/10.1007/s00256-022-04191-6
- Calvet J, Garcia-Manrique M, Berenguer-Llergo A, Orellana C, Cirera SG, Llop M et al. Metabolic and inflammatory profiles define phenotypes with clinical relevance in female knee osteoarthritis patients with joint effusion. Rheumatology (Oxford). 2023;62(12):3875–85. PMID: 36944271. PMCID: PMC10691929. https://doi.org/10.1093/rheumatology/kead135
- Shumnalieva R, Kotov G, Monov S. Obesity-related knee osteoarthritis – Current concepts. Life (Basel). 2023;13(8):1650. PMID: 37629507. PMCID: PMC10456094. https://doi.org/10.3390/life13081650
- Chen L, Zheng JJY, Li G, Yuan J, Ebert JR, Li H et al. Pathogenesis and clinical management of obesity-related knee osteoarthritis: Impact of mechanical loading. J Orthop Translat. 2020;24:66–75. PMID: 32695606. PMCID: PMC7349942. https://doi.org/10.1016/j.jot.2020.05.001
- Lee W, Nims RJ, Savadipour A, Zhang Q, Leddy HA, Liu F et al. Inflammatory signaling sensitizes Piezo1 mechanotransduction in articular chondrocytes as a pathogenic feed-forward mechanism in osteoarthritis. Proc Natl Acad Sci U S A. 2021;118(13):e2001611118. PMID: 33758095. PMCID: PMC8020656. https://doi.org/10.1073/pnas.2001611118
- Grassel S, Muschter D. Recent advances in the treatment of osteoarthritis. F1000Res. 2020;9:F1000 Faculty Rev-325. PMID: 32419923. PMCID: PMC7199286. https://doi.org/10.12688/f1000research.22115.1
- Sampath SJP, Venkatesan V, Ghosh S, Kotikalapudi N. Obesity, metabolic syndrome, and osteoarthritis – An updated review. Curr Obes Rep. 2023;12(3):308–31. PMID: 37578613. https://doi.org/10.1007/s13679-023-00520-5
- Wei G, Lu K, Umar M, Zhu Z, Lu WW, Speakman JR et al. Risk of metabolic abnormalities in osteoarthritis: A new perspective to understand its pathological mechanisms. Bone Res. 2023;11(1):63. PMID: 38052778. PMCID: PMC10698167. https://doi.org/10.1038/s41413-023-00301-9
- Zheng L, Zhang Z, Sheng P, Mobasheri A. The role of metabolism in chondrocyte dysfunction and the progression of osteoarthritis. Ageing Res Rev. 2021;66:101249. PMID: 33383189. https://doi.org/10.1016/j.arr.2020.101249
- Herrero-Beaumont G, Castro-Dominguez F, Migliore A, Naredo E, Largo R, Reginster JY. Systemic osteoarthritis: The difficulty of categorically naming a continuous condition. Aging Clin Exp Res. 2024;36(1):45. PMID: 38376694. PMCID: PMC10879223. https://doi.org/10.1007/s40520-024-02714-w
- Gu Y, Jin Q, Hu J, Wang X, Yu W, Wang Z et al. Causality of genetically determined metabolites and metabolic pathways on osteoarthritis: A two-sample Mendelian randomization study. J Transl Med. 2023;21(1):357. PMID: 37259122. PMCID: PMC10230782. https://doi.org/10.1186/s12967-023-04165-9
- Coaccioli S, Sarzi-Puttini P, Zis P, Rinonapoli G, Varrassi G. Osteoarthritis: New insight on its pathophysiology. J Clin Med. 2022;11(20):6013. PMID: 36294334. PMCID: PMC9604603. https://doi.org/10.3390/jcm11206013
- Pan T, Pan F, Gao W, Hu SS, Wang D. Involvement of macrophages and spinal microglia in osteoarthritis pain. Curr Rheumatol Rep. 2021;23(5):29. PMID: 33893883. https://doi.org/10.1007/s11926-021-00997-w
- Roemer F, Collins J, Neogi T, Crema MD, Guermazi A. Association of knee OA structural phenotypes to risk for progression: A secondary analysis from the Foundation for National Institutes of Health Osteoarthritis Biomarkers study (FNIH). Osteoarthritis Cartilage. 2020;28(9):1220–22. PMID: 32433936. PMCID: PMC10622165. https://doi.org/10.1016/j.joca.2020.05.008
- Jansen NEJ, Molendijk E, Schiphof D, van Meurs JBJ, Oei EHG, van Middelkoop M, Bierma-Zeinstra SMA. Metabolic syndrome and the progression of knee osteoarthritis on MRI. Osteoarthritis Cartilage. 2023;31(5):647–55. PMID: 36801367. https://doi.org/10.1016/j.joca.2023.02.003
- Zhang C, Lin Y, Yan C, Zhang W. Adipokine signaling pathways in osteoarthritis. Front Bioeng Biotechnol. 2022;10:865370. PMID: 35519618. PMCID: PMC9062110. https://doi.org/10.3389/fbioe.2022.865370
- Angelini F, Widera P, Mobasheri A, Blair J, Struglics A, Uebelhoer M et al. Osteoarthritis endotype discovery via clustering of biochemical marker data. Ann Rheum Dis. 2022;81(5): 666–75. PMID: 35246457. https://doi.org/10.1136/annrheumdis-2021-221763
- Wijesinghe SN, Badoume A, Nanus DE, Sharma-Oates A, Farah H, Certo M et al. Obesity defined molecular endotypes in the synovium of patients with osteoarthritis provides a rationale for therapeutic targeting of fibroblast subsets. Clin Transl Med. 2023;13(4):e1232. PMID: 37006170. PMCID: PMC10068310. https://doi.org/10.1002/ctm2.1232
- Tilg H, Ianiro G, Gasbarrini A, Adolph TE. Adipokines: Masterminds of metabolic inflammation. Nat Rev Immunol. 2025;25(4):250–65. PMID: 39511425. https://doi.org/10.1038/s41577-024-01103-8
- Chen WC, Lin CY, Kuo SJ, Liu SC, Lu YC, Chen YL et al. Resistin enhances VCAM-1 expression and monocyte adhesion in human osteoarthritis synovial fibroblasts by inhibiting MiR-381 expression through the PKC, p38, and JNK signaling pathways. Cells. 2020;9(6):1369. PMID: 32492888. PMCID: PMC7349127. https://doi.org/10.3390/cells9061369
- Feng X, Xiao J, Bai L. Role of adiponectin in osteoarthritis. Front Cell Dev Biol. 2022;10:992764. PMID: 36158216. PMCID: PMC9492855. https://doi.org/10.3389/fcell.2022.992764
- Huang NC, Yang TS, Busa P, Lin CL, Fang YC, Chen IJ, Wong CS. Detection and evaluation of serological biomarkers to predict osteoarthritis in anterior cruciate ligament transection combined medial meniscectomy rat model. Int J Mol Sci. 2021;22(19):10179. PMID: 34638520. PMCID: PMC8508613. https://doi.org/10.3390/ijms221910179
- Lipke K, Kubis-Kubiak A, Piwowar A. Molecular mechanism of lipotoxicity as an interesting aspect in the development of pathological states-current view of knowledge. Cells. 2022;11(5):844. PMID: 35269467. PMCID: PMC8909283. https://doi.org/10.3390/cells11050844
- Mustonen A, Nieminen P. Fatty acids and oxylipins in osteoarthritis and rheumatoid arthritis – a complex field with significant potential for future treatments. Curr Rheumatol Rep. 2021;23(6):41. PMID: 33913032. PMCID: PMC8081702. https://doi.org/10.1007/s11926-021-01007-9
- Liu H, Witzigreuter L, Sathiaseelan R, Agbaga MP, Brush R, Stout MB, Zhu S. Obesity promotes lipid accumulation in mouse cartilage-A potential role of acetyl-CoA carboxylase (ACC) mediated chondrocyte de novo lipogenesis. J Orthop Res. 2022;40(12): 2771–79. PMID: 35279877. PMCID: PMC9647658. https://doi.org/10.1002/jor.25322
- Qi Z, Zhu J, Cai W, Lou C, Li Z. The role and intervention of mitochondrial metabolism in osteoarthritis. Mol Cell Biochem. 2024;479(6):1513–24. PMID: 37486450. PMCID: PMC11224101. https://doi.org/10.1007/s11010-023-04818-9
- Eveque-Mourroux MR, Emans PJ, Boonen A, Claes BSR, Bouwman FG, Heeren RMA, Cillero-Pastor B. Heterogeneity of lipid and protein cartilage profiles associated with human osteoarthritis with or without type 2 diabetes mellitus. J Proteome Res. 2021;20(5):2973–82. PMID: 33866785. PMCID: PMC8155553. https://doi.org/10.1021/acs.jproteome.1c00186
- Horvath E, Solyom A, Szekely J, Nagy E, Popoviciu H. Inflammatory and metabolic signaling interfaces of the hypertrophic and senescent chondrocyte phenotypes associated with osteoarthritis. Int J Mol Sci. 2023;24(22):16468. PMID: 38003658. PMCID: PMC10671750. https://doi.org/10.3390/ijms242216468
- Li Q, Wen Y, Wang L, Chen B, Chen J, Wang H, Chen L. Hyperglycemia-induced accumulation of advanced glycosylation end products in fibroblast-like synoviocytes promotes knee osteoarthritis. Exp Mol Med. 2021;53(11):1735–47. PMID: 34759325. PMCID: PMC8639977. https://doi.org/10.1038/s12276-021-00697-6
- Wang H, Zhu Z, Wu JT, Wang H, Gao L, Xiao J. Effect of type II diabetes-induced osteoarthritis on articular cartilage aging in rats: A study in vivo and in vitro. Exp Gerontol. 2021;150:111354. PMID: 33872738. https://doi.org/10.1016/j.exger.2021.111354
- Riegger J, Schoppa A, Ruths L, Haffner-Luntzer M, Ignatius A. Oxidative stress as a key modulator of cell fate decision in osteoarthritis and osteoporosis: A narrative review. Cell Mol Biol Lett. 2023;28(1):76. PMID: 37777764. PMCID: PMC10541721. https://doi.org/10.1186/s11658-023-00489-y
- Jiang W, Chen H, Lin Y, Cheng K, Zhou D, Chen R et al. Mechanical stress abnormalities promote chondrocyte senescence – the pathogenesis of knee osteoarthritis. Biomed Pharmacother. 2023;167:115552. PMID: 37748410. https://doi.org/10.1016/j.biopha.2023.115552
- Han Z, Wang K, Ding S, Zhang M. Cross-talk of inflammation and cellular senescence: A new insight into the occurrence and progression of osteoarthritis. Bone Res. 2024;12(1):69. PMID: 39627227. PMCID: PMC11615234. https://doi.org/10.1038/s41413-024-00375-z
- Lin S, Wu B, Hu X, Lu H. Sirtuin 4 (Sirt4) downregulation contributes to chondrocyte senescence and osteoarthritis via mediating mitochondrial dysfunction. Int J Biol Sci. 2024;20(4):1256–78. PMID: 38385071. PMCID: PMC10878156. https://doi.org/10.7150/ijbs.85585
- Rai MF, Collins KH, Lang A, Maerz T, Geurts J, Ruiz-Romero C et al. Three decades of advancements in osteoarthritis research: Insights from transcriptomic, proteomic, and metabolomic studies. Osteoarthritis Cartilage. 2024;32(4):385–97. PMID: 38049029. PMCID: PMC12239761. https://doi.org/10.1016/j.joca.2023.11.019
- D’Souza N, Charlton J, Grayson J, Kobayashi S, Hutchison L, Hunt M, Simic M. Are biomechanics during gait associated with the structural disease onset and progression of lower limb osteoarthritis? A systematic review and meta-analysis. Osteoarthritis Cartilage. 2022;30(3):381–94. PMID: 34757028. https://doi.org/10.1016/j.joca.2021.10.010
- Sanchez-Lopez E, Coras R, Torres A, Lane NE, Guma M. Synovial inflammation in osteoarthritis progression. Nat Rev Rheumatol. 2022;18(5):258–75. PMID: 35165404. PMCID: PMC9050956. https://doi.org/10.1038/s41584-022-00749-9
- Клинические рекомендации. Гонартроз. Ассоциация ревматологов России, Ассоциация травматологов-ортопедов России, общероссийская общественная организация «Ассоциация реабилитологов России». Рубрикатор клинических рекомендаций Минздрава России. 2024. ID: 868_1. Доступ: https://cr.minzdrav.gov.ru/view-cr/868_1 (дата обращения – 07.10.2025). [Clinical guidelines. Gonarthrosis. Association of Rheumatologists of Russia, Association of Traumatologists and Orthopedists of Russia, Association of Rehabilitation Specialists of Russia. Rubricator of clinical guidelines of the Ministry of Healthcare of Russia. 2024. ID: 868_1. Доступ: https://cr.minzdrav.gov.ru/view-cr/868_1 (date of access – 07.10.2025).
- Клинические рекомендации. Коксартроз. Ассоциация ревматологов России, Ассоциация травматологов-ортопедов России, общероссийская общественная организация «Ассоциация реабилитологов России». Рубрикатор клинических рекомендаций Минздрава России. 2024. ID: 870_1. Доступ: https://cr.minzdrav.gov.ru/view-cr/870_1 (дата обращения – 07.10.2025). [Clinical guidelines. Coxarthrosis. Association of Rheumatologists of Russia, Association of Traumatologists and Orthopedists of Russia, Association of Rehabilitation Specialists of Russia. Rubricator of clinical guidelines of the Ministry of Healthcare of Russia. 2024. ID: 870_1. Доступ: https://cr.minzdrav.gov.ru/view-cr/870_1 (date of access – 07.10.2025).
- Eymard F, Chevalier X, Conrozier T. Obesity and radiological severity are associated with viscosupplementation failure in patients with knee osteoarthritis. J Orthop Res. 2017;35(10):2269–74. PMID: 28128473. https://doi.org/10.1002/jor.23529
- Conrozier T, Eymard F, Chouk M, Chevalier X. Impact of obesity, structural severity and their combination on the efficacy of viscosupplementation in patients with knee osteoarthritis. BMC Musculoskelet Disord. 2019;20(1):376. PMID: 31421686. PMCID: PMC6698328. https://doi.org/10.1186/s12891-019-2748-0
- Cole BJ, Karas V, Hussey K, Merkow DB, Pilz K, Fortier LA. Hyaluronic acid versus platelet-rich plasma: A prospective, double-blind randomized controlled trial comparing clinical outcomes and effects on intra-articular biology for the treatment of knee osteoarthritis. Am J Sports Med. 2017;45(2):339–46. PMID: 28146403. https://doi.org/10.1177/0363546516665809
- Agerup B, Berg P, Akermark C. Non-animal stabilized hyaluronic acid: A new formulation for the treatment of osteoarthritis. BioDrugs. 2005;19(1):23–30. PMID: 15691214. https://doi.org/10.2165/00063030-200519010-00003
- Lindqvist U, Tolmachev V, Kairemo K, Astrom G, Jonsson E, Lundqvist H. Elimination of stabilised hyaluronan from the knee joint in healthy men. Clin Pharmacokinet. 2002;41(8):603–13. PMID: 12102643. https://doi.org/10.2165/00003088-200241080-00004
- Brandt KD, Smith GN Jr, Simon LS. Intraarticular injection of hyaluronan as treatment for knee osteoarthritis: What is the evidence? Arthritis Rheum. 2000;43(6):1192–203. PMID: 10857778. https://doi.org/10.1002/1529-0131(200006)43:6<1192::AID-ANR2>3.0.CO;2-L
- Wu YZ, Huang HT, Ho CJ, Shih CL, Chen CH, Cheng TL et al. Molecular weight of hyaluronic acid has major influence on its efficacy and safety for viscosupplementation in hip osteoarthritis: A systematic review and meta-analysis. Cartilage. 2021;13(1_suppl):169S–184S. PMID: 34109828. PMCID: PMC8808882. https://doi.org/10.1177/19476035211021903
- Gupta RC, Lall R, Srivastava A, Sinha A. Hyaluronic acid: Molecular mechanisms and therapeutic trajectory. Front Vet Sci. 2019;6:192. PMID: 31294035. PMCID: PMC6603175. https://doi.org/10.3389/fvets.2019.00192
- Rayahin JE, Buhrman JS, Zhang Y, Koh TJ, Gemeinhart RA. High and low molecular weight hyaluronic acid differentially influence macrophage activation. ACS Biomater Sci Eng. 2015;1(7):481–93. PMID: 26280020. PMCID: PMC4533115. https://doi.org/10.1021/acsbiomaterials.5b00181
- Hashizume M, Mihara M. High molecular weight hyaluronic acid inhibits IL-6-induced MMP production from human chondrocytes by up-regulating the ERK inhibitor, MKP-1. Biochem Biophys Res Commun. 2010;403(2):184–89. PMID: 21059338. https://doi.org/10.1016/j.bbrc.2010.10.135
- Ferkel E, Manjoo A, Martins D, Bhandari M, Sethi P, Nicholls M. Intra-articular hyaluronic acid treatments for knee osteoarthritis: A systematic review of product properties. Cartilage. 2023;14(4):424–32. PMID: 37314014. PMCID: PMC10807741. https://doi.org/10.1177/19476035231154530
- Altman RD, Manjoo A, Fierlinger A, Niazi F, Nicholls M. The mechanism of action for hyaluronic acid treatment in the osteoarthritic knee: A systematic review. BMC Musculoskelet Disord. 2015;16:321. PMID: 26503103. PMCID: PMC4621876. https://doi.org/10.1186/s12891-015-0775-z
- Phillips M, Vannabouathong C, Devji T, Patel R, Gomes Z, Patel A et al. Differentiating factors of intra-articular injectables have a meaningful impact on knee osteoarthritis outcomes: A network meta-analysis. Knee Surg Sports Traumatol Arthrosc. 2020;28(9):3031–39. PMID: 31897550. PMCID: PMC7471203. https://doi.org/10.1007/s00167-019-05763-1
- Reichenbach S, Blank S, Rutjes AW, Shang A, King EA, Dieppe PA et al. Hylan versus hyaluronic acid for osteoarthritis of the knee: A systematic review and meta-analysis. Arthritis Rheum. 2007;57(8):1410–18. PMID: 18050181. https://doi.org/10.1002/art.23103
Supplementary files

