Clinical and morphological features of the metabolic phenotype of osteoarthritis and personalized choice of hyaluronic acid product

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Osteoarthritis (OA) is a heterogeneous disease including various phenotypes and endotypes. OA metabolic phenotype is further subdivided into four endotypes, the development of which is associated with adipokine-mediated inflammation (1), lipotoxicity (2), exposure to advanced glycation end products (3), and mitochondrial dysfunction (4). These forms are associated with different biochemical mechanisms of disease development. Effective treatment of OA requires a personalized approach. Hyaluronic acid medicines play an important role in the treatment of this disease due to their ability to viscosupplement within a month of administration and anti-inflammatory activity lasting up to 6 months. The choice of a specific medicine largely depends on molecular weight of the active component. The advantage of combination hyaluronic acid medicines with different molecular weights (Flexotron® Ultra, Flexotron® Ultra M) for the metabolic phenotype of OA lays in their simultaneous action on mechanical damage of cartilage and relief of the inflammatory component of the disease.

Full Text

Restricted Access

About the authors

Olga V. Teplyakova

Ural State Medical University of the Ministry of Healthcare of Russia; Medical association “Novaya bolnitsa” LLC

Author for correspondence.
Email: oteplyakova69@gmail.com
ORCID iD: 0000-0003-2114-0419
SPIN-code: 3208-8679

MD, Dr. Sci. (Medicine), professor of the Department of outpatient therapy, head of the Center of Clinical Rheumatology

Russian Federation, Yekaterinburg; Yekaterinburg

Andrey V. Zhilyakov

Ural State Medical University of the Ministry of Healthcare of Russia

Email: doctor-zhilyakov@rambler.ru
ORCID iD: 0000-0003-1261-3712
SPIN-code: 2275-0696

MD, Dr. Sci. (Medicine), associate professor of the Department of traumatology and orthopedics, head of the clinic of traumatology and orthopedics, Yekaterinburg Medical Center LLC

Russian Federation, Yekaterinburg

Olga G. Tsvetkova

Medical association “Novaya bolnitsa” LLC

Email: tsvetkova.og.work@gmail.com
ORCID iD: 0009-0006-6301-9886

MD, rheumatologist

Russian Federation, Yekaterinburg

References

  1. Berenbaum F, Walker C. Osteoarthritis and inflammation: A serious disease with overlapping phenotypic patterns. Postgrad Med. 2020;132(4):377–84. PMID: 32100608. https://doi.org/10.1080/00325481.2020.1730669
  2. Roemer F, Jarraya M, Collins J, Kwoh CK, Hayashi D, Hunter DJ, Guermazi A. Structural phenotypes of knee osteoarthritis: Potential clinical and research relevance. Skeletal Radiol. 2023;52(11):2021–30. PMID: 36161341. PMCID: PMC10509066. https://doi.org/10.1007/s00256-022-04191-6
  3. Calvet J, Garcia-Manrique M, Berenguer-Llergo A, Orellana C, Cirera SG, Llop M et al. Metabolic and inflammatory profiles define phenotypes with clinical relevance in female knee osteoarthritis patients with joint effusion. Rheumatology (Oxford). 2023;62(12):3875–85. PMID: 36944271. PMCID: PMC10691929. https://doi.org/10.1093/rheumatology/kead135
  4. Shumnalieva R, Kotov G, Monov S. Obesity-related knee osteoarthritis – Current concepts. Life (Basel). 2023;13(8):1650. PMID: 37629507. PMCID: PMC10456094. https://doi.org/10.3390/life13081650
  5. Chen L, Zheng JJY, Li G, Yuan J, Ebert JR, Li H et al. Pathogenesis and clinical management of obesity-related knee osteoarthritis: Impact of mechanical loading. J Orthop Translat. 2020;24:66–75. PMID: 32695606. PMCID: PMC7349942. https://doi.org/10.1016/j.jot.2020.05.001
  6. Lee W, Nims RJ, Savadipour A, Zhang Q, Leddy HA, Liu F et al. Inflammatory signaling sensitizes Piezo1 mechanotransduction in articular chondrocytes as a pathogenic feed-forward mechanism in osteoarthritis. Proc Natl Acad Sci U S A. 2021;118(13):e2001611118. PMID: 33758095. PMCID: PMC8020656. https://doi.org/10.1073/pnas.2001611118
  7. Grassel S, Muschter D. Recent advances in the treatment of osteoarthritis. F1000Res. 2020;9:F1000 Faculty Rev-325. PMID: 32419923. PMCID: PMC7199286. https://doi.org/10.12688/f1000research.22115.1
  8. Sampath SJP, Venkatesan V, Ghosh S, Kotikalapudi N. Obesity, metabolic syndrome, and osteoarthritis – An updated review. Curr Obes Rep. 2023;12(3):308–31. PMID: 37578613. https://doi.org/10.1007/s13679-023-00520-5
  9. Wei G, Lu K, Umar M, Zhu Z, Lu WW, Speakman JR et al. Risk of metabolic abnormalities in osteoarthritis: A new perspective to understand its pathological mechanisms. Bone Res. 2023;11(1):63. PMID: 38052778. PMCID: PMC10698167. https://doi.org/10.1038/s41413-023-00301-9
  10. Zheng L, Zhang Z, Sheng P, Mobasheri A. The role of metabolism in chondrocyte dysfunction and the progression of osteoarthritis. Ageing Res Rev. 2021;66:101249. PMID: 33383189. https://doi.org/10.1016/j.arr.2020.101249
  11. Herrero-Beaumont G, Castro-Dominguez F, Migliore A, Naredo E, Largo R, Reginster JY. Systemic osteoarthritis: The difficulty of categorically naming a continuous condition. Aging Clin Exp Res. 2024;36(1):45. PMID: 38376694. PMCID: PMC10879223. https://doi.org/10.1007/s40520-024-02714-w
  12. Gu Y, Jin Q, Hu J, Wang X, Yu W, Wang Z et al. Causality of genetically determined metabolites and metabolic pathways on osteoarthritis: A two-sample Mendelian randomization study. J Transl Med. 2023;21(1):357. PMID: 37259122. PMCID: PMC10230782. https://doi.org/10.1186/s12967-023-04165-9
  13. Coaccioli S, Sarzi-Puttini P, Zis P, Rinonapoli G, Varrassi G. Osteoarthritis: New insight on its pathophysiology. J Clin Med. 2022;11(20):6013. PMID: 36294334. PMCID: PMC9604603. https://doi.org/10.3390/jcm11206013
  14. Pan T, Pan F, Gao W, Hu SS, Wang D. Involvement of macrophages and spinal microglia in osteoarthritis pain. Curr Rheumatol Rep. 2021;23(5):29. PMID: 33893883. https://doi.org/10.1007/s11926-021-00997-w
  15. Roemer F, Collins J, Neogi T, Crema MD, Guermazi A. Association of knee OA structural phenotypes to risk for progression: A secondary analysis from the Foundation for National Institutes of Health Osteoarthritis Biomarkers study (FNIH). Osteoarthritis Cartilage. 2020;28(9):1220–22. PMID: 32433936. PMCID: PMC10622165. https://doi.org/10.1016/j.joca.2020.05.008
  16. Jansen NEJ, Molendijk E, Schiphof D, van Meurs JBJ, Oei EHG, van Middelkoop M, Bierma-Zeinstra SMA. Metabolic syndrome and the progression of knee osteoarthritis on MRI. Osteoarthritis Cartilage. 2023;31(5):647–55. PMID: 36801367. https://doi.org/10.1016/j.joca.2023.02.003
  17. Zhang C, Lin Y, Yan C, Zhang W. Adipokine signaling pathways in osteoarthritis. Front Bioeng Biotechnol. 2022;10:865370. PMID: 35519618. PMCID: PMC9062110. https://doi.org/10.3389/fbioe.2022.865370
  18. Angelini F, Widera P, Mobasheri A, Blair J, Struglics A, Uebelhoer M et al. Osteoarthritis endotype discovery via clustering of biochemical marker data. Ann Rheum Dis. 2022;81(5): 666–75. PMID: 35246457. https://doi.org/10.1136/annrheumdis-2021-221763
  19. Wijesinghe SN, Badoume A, Nanus DE, Sharma-Oates A, Farah H, Certo M et al. Obesity defined molecular endotypes in the synovium of patients with osteoarthritis provides a rationale for therapeutic targeting of fibroblast subsets. Clin Transl Med. 2023;13(4):e1232. PMID: 37006170. PMCID: PMC10068310. https://doi.org/10.1002/ctm2.1232
  20. Tilg H, Ianiro G, Gasbarrini A, Adolph TE. Adipokines: Masterminds of metabolic inflammation. Nat Rev Immunol. 2025;25(4):250–65. PMID: 39511425. https://doi.org/10.1038/s41577-024-01103-8
  21. Chen WC, Lin CY, Kuo SJ, Liu SC, Lu YC, Chen YL et al. Resistin enhances VCAM-1 expression and monocyte adhesion in human osteoarthritis synovial fibroblasts by inhibiting MiR-381 expression through the PKC, p38, and JNK signaling pathways. Cells. 2020;9(6):1369. PMID: 32492888. PMCID: PMC7349127. https://doi.org/10.3390/cells9061369
  22. Feng X, Xiao J, Bai L. Role of adiponectin in osteoarthritis. Front Cell Dev Biol. 2022;10:992764. PMID: 36158216. PMCID: PMC9492855. https://doi.org/10.3389/fcell.2022.992764
  23. Huang NC, Yang TS, Busa P, Lin CL, Fang YC, Chen IJ, Wong CS. Detection and evaluation of serological biomarkers to predict osteoarthritis in anterior cruciate ligament transection combined medial meniscectomy rat model. Int J Mol Sci. 2021;22(19):10179. PMID: 34638520. PMCID: PMC8508613. https://doi.org/10.3390/ijms221910179
  24. Lipke K, Kubis-Kubiak A, Piwowar A. Molecular mechanism of lipotoxicity as an interesting aspect in the development of pathological states-current view of knowledge. Cells. 2022;11(5):844. PMID: 35269467. PMCID: PMC8909283. https://doi.org/10.3390/cells11050844
  25. Mustonen A, Nieminen P. Fatty acids and oxylipins in osteoarthritis and rheumatoid arthritis – a complex field with significant potential for future treatments. Curr Rheumatol Rep. 2021;23(6):41. PMID: 33913032. PMCID: PMC8081702. https://doi.org/10.1007/s11926-021-01007-9
  26. Liu H, Witzigreuter L, Sathiaseelan R, Agbaga MP, Brush R, Stout MB, Zhu S. Obesity promotes lipid accumulation in mouse cartilage-A potential role of acetyl-CoA carboxylase (ACC) mediated chondrocyte de novo lipogenesis. J Orthop Res. 2022;40(12): 2771–79. PMID: 35279877. PMCID: PMC9647658. https://doi.org/10.1002/jor.25322
  27. Qi Z, Zhu J, Cai W, Lou C, Li Z. The role and intervention of mitochondrial metabolism in osteoarthritis. Mol Cell Biochem. 2024;479(6):1513–24. PMID: 37486450. PMCID: PMC11224101. https://doi.org/10.1007/s11010-023-04818-9
  28. Eveque-Mourroux MR, Emans PJ, Boonen A, Claes BSR, Bouwman FG, Heeren RMA, Cillero-Pastor B. Heterogeneity of lipid and protein cartilage profiles associated with human osteoarthritis with or without type 2 diabetes mellitus. J Proteome Res. 2021;20(5):2973–82. PMID: 33866785. PMCID: PMC8155553. https://doi.org/10.1021/acs.jproteome.1c00186
  29. Horvath E, Solyom A, Szekely J, Nagy E, Popoviciu H. Inflammatory and metabolic signaling interfaces of the hypertrophic and senescent chondrocyte phenotypes associated with osteoarthritis. Int J Mol Sci. 2023;24(22):16468. PMID: 38003658. PMCID: PMC10671750. https://doi.org/10.3390/ijms242216468
  30. Li Q, Wen Y, Wang L, Chen B, Chen J, Wang H, Chen L. Hyperglycemia-induced accumulation of advanced glycosylation end products in fibroblast-like synoviocytes promotes knee osteoarthritis. Exp Mol Med. 2021;53(11):1735–47. PMID: 34759325. PMCID: PMC8639977. https://doi.org/10.1038/s12276-021-00697-6
  31. Wang H, Zhu Z, Wu JT, Wang H, Gao L, Xiao J. Effect of type II diabetes-induced osteoarthritis on articular cartilage aging in rats: A study in vivo and in vitro. Exp Gerontol. 2021;150:111354. PMID: 33872738. https://doi.org/10.1016/j.exger.2021.111354
  32. Riegger J, Schoppa A, Ruths L, Haffner-Luntzer M, Ignatius A. Oxidative stress as a key modulator of cell fate decision in osteoarthritis and osteoporosis: A narrative review. Cell Mol Biol Lett. 2023;28(1):76. PMID: 37777764. PMCID: PMC10541721. https://doi.org/10.1186/s11658-023-00489-y
  33. Jiang W, Chen H, Lin Y, Cheng K, Zhou D, Chen R et al. Mechanical stress abnormalities promote chondrocyte senescence – the pathogenesis of knee osteoarthritis. Biomed Pharmacother. 2023;167:115552. PMID: 37748410. https://doi.org/10.1016/j.biopha.2023.115552
  34. Han Z, Wang K, Ding S, Zhang M. Cross-talk of inflammation and cellular senescence: A new insight into the occurrence and progression of osteoarthritis. Bone Res. 2024;12(1):69. PMID: 39627227. PMCID: PMC11615234. https://doi.org/10.1038/s41413-024-00375-z
  35. Lin S, Wu B, Hu X, Lu H. Sirtuin 4 (Sirt4) downregulation contributes to chondrocyte senescence and osteoarthritis via mediating mitochondrial dysfunction. Int J Biol Sci. 2024;20(4):1256–78. PMID: 38385071. PMCID: PMC10878156. https://doi.org/10.7150/ijbs.85585
  36. Rai MF, Collins KH, Lang A, Maerz T, Geurts J, Ruiz-Romero C et al. Three decades of advancements in osteoarthritis research: Insights from transcriptomic, proteomic, and metabolomic studies. Osteoarthritis Cartilage. 2024;32(4):385–97. PMID: 38049029. PMCID: PMC12239761. https://doi.org/10.1016/j.joca.2023.11.019
  37. D’Souza N, Charlton J, Grayson J, Kobayashi S, Hutchison L, Hunt M, Simic M. Are biomechanics during gait associated with the structural disease onset and progression of lower limb osteoarthritis? A systematic review and meta-analysis. Osteoarthritis Cartilage. 2022;30(3):381–94. PMID: 34757028. https://doi.org/10.1016/j.joca.2021.10.010
  38. Sanchez-Lopez E, Coras R, Torres A, Lane NE, Guma M. Synovial inflammation in osteoarthritis progression. Nat Rev Rheumatol. 2022;18(5):258–75. PMID: 35165404. PMCID: PMC9050956. https://doi.org/10.1038/s41584-022-00749-9
  39. Клинические рекомендации. Гонартроз. Ассоциация ревматологов России, Ассоциация травматологов-ортопедов России, общероссийская общественная организация «Ассоциация реабилитологов России». Рубрикатор клинических рекомендаций Минздрава России. 2024. ID: 868_1. Доступ: https://cr.minzdrav.gov.ru/view-cr/868_1 (дата обращения – 07.10.2025). [Clinical guidelines. Gonarthrosis. Association of Rheumatologists of Russia, Association of Traumatologists and Orthopedists of Russia, Association of Rehabilitation Specialists of Russia. Rubricator of clinical guidelines of the Ministry of Healthcare of Russia. 2024. ID: 868_1. Доступ: https://cr.minzdrav.gov.ru/view-cr/868_1 (date of access – 07.10.2025).
  40. Клинические рекомендации. Коксартроз. Ассоциация ревматологов России, Ассоциация травматологов-ортопедов России, общероссийская общественная организация «Ассоциация реабилитологов России». Рубрикатор клинических рекомендаций Минздрава России. 2024. ID: 870_1. Доступ: https://cr.minzdrav.gov.ru/view-cr/870_1 (дата обращения – 07.10.2025). [Clinical guidelines. Coxarthrosis. Association of Rheumatologists of Russia, Association of Traumatologists and Orthopedists of Russia, Association of Rehabilitation Specialists of Russia. Rubricator of clinical guidelines of the Ministry of Healthcare of Russia. 2024. ID: 870_1. Доступ: https://cr.minzdrav.gov.ru/view-cr/870_1 (date of access – 07.10.2025).
  41. Eymard F, Chevalier X, Conrozier T. Obesity and radiological severity are associated with viscosupplementation failure in patients with knee osteoarthritis. J Orthop Res. 2017;35(10):2269–74. PMID: 28128473. https://doi.org/10.1002/jor.23529
  42. Conrozier T, Eymard F, Chouk M, Chevalier X. Impact of obesity, structural severity and their combination on the efficacy of viscosupplementation in patients with knee osteoarthritis. BMC Musculoskelet Disord. 2019;20(1):376. PMID: 31421686. PMCID: PMC6698328. https://doi.org/10.1186/s12891-019-2748-0
  43. Cole BJ, Karas V, Hussey K, Merkow DB, Pilz K, Fortier LA. Hyaluronic acid versus platelet-rich plasma: A prospective, double-blind randomized controlled trial comparing clinical outcomes and effects on intra-articular biology for the treatment of knee osteoarthritis. Am J Sports Med. 2017;45(2):339–46. PMID: 28146403. https://doi.org/10.1177/0363546516665809
  44. Agerup B, Berg P, Akermark C. Non-animal stabilized hyaluronic acid: A new formulation for the treatment of osteoarthritis. BioDrugs. 2005;19(1):23–30. PMID: 15691214. https://doi.org/10.2165/00063030-200519010-00003
  45. Lindqvist U, Tolmachev V, Kairemo K, Astrom G, Jonsson E, Lundqvist H. Elimination of stabilised hyaluronan from the knee joint in healthy men. Clin Pharmacokinet. 2002;41(8):603–13. PMID: 12102643. https://doi.org/10.2165/00003088-200241080-00004
  46. Brandt KD, Smith GN Jr, Simon LS. Intraarticular injection of hyaluronan as treatment for knee osteoarthritis: What is the evidence? Arthritis Rheum. 2000;43(6):1192–203. PMID: 10857778. https://doi.org/10.1002/1529-0131(200006)43:6<1192::AID-ANR2>3.0.CO;2-L
  47. Wu YZ, Huang HT, Ho CJ, Shih CL, Chen CH, Cheng TL et al. Molecular weight of hyaluronic acid has major influence on its efficacy and safety for viscosupplementation in hip osteoarthritis: A systematic review and meta-analysis. Cartilage. 2021;13(1_suppl):169S–184S. PMID: 34109828. PMCID: PMC8808882. https://doi.org/10.1177/19476035211021903
  48. Gupta RC, Lall R, Srivastava A, Sinha A. Hyaluronic acid: Molecular mechanisms and therapeutic trajectory. Front Vet Sci. 2019;6:192. PMID: 31294035. PMCID: PMC6603175. https://doi.org/10.3389/fvets.2019.00192
  49. Rayahin JE, Buhrman JS, Zhang Y, Koh TJ, Gemeinhart RA. High and low molecular weight hyaluronic acid differentially influence macrophage activation. ACS Biomater Sci Eng. 2015;1(7):481–93. PMID: 26280020. PMCID: PMC4533115. https://doi.org/10.1021/acsbiomaterials.5b00181
  50. Hashizume M, Mihara M. High molecular weight hyaluronic acid inhibits IL-6-induced MMP production from human chondrocytes by up-regulating the ERK inhibitor, MKP-1. Biochem Biophys Res Commun. 2010;403(2):184–89. PMID: 21059338. https://doi.org/10.1016/j.bbrc.2010.10.135
  51. Ferkel E, Manjoo A, Martins D, Bhandari M, Sethi P, Nicholls M. Intra-articular hyaluronic acid treatments for knee osteoarthritis: A systematic review of product properties. Cartilage. 2023;14(4):424–32. PMID: 37314014. PMCID: PMC10807741. https://doi.org/10.1177/19476035231154530
  52. Altman RD, Manjoo A, Fierlinger A, Niazi F, Nicholls M. The mechanism of action for hyaluronic acid treatment in the osteoarthritic knee: A systematic review. BMC Musculoskelet Disord. 2015;16:321. PMID: 26503103. PMCID: PMC4621876. https://doi.org/10.1186/s12891-015-0775-z
  53. Phillips M, Vannabouathong C, Devji T, Patel R, Gomes Z, Patel A et al. Differentiating factors of intra-articular injectables have a meaningful impact on knee osteoarthritis outcomes: A network meta-analysis. Knee Surg Sports Traumatol Arthrosc. 2020;28(9):3031–39. PMID: 31897550. PMCID: PMC7471203. https://doi.org/10.1007/s00167-019-05763-1
  54. Reichenbach S, Blank S, Rutjes AW, Shang A, King EA, Dieppe PA et al. Hylan versus hyaluronic acid for osteoarthritis of the knee: A systematic review and meta-analysis. Arthritis Rheum. 2007;57(8):1410–18. PMID: 18050181. https://doi.org/10.1002/art.23103

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Bionika Media