Уравнение обострения хобл: что мы знаем о переменных? (обзор литературы)

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Доступ платный или только для подписчиков

Аннотация

В обзоре обобщаются данные, посвященные проблеме обострений хронической обструктивной болезни легких (ХОБЛ). Рассматриваются последствия обострений на прогрессирование заболевания и риски возникновения осложнений со стороны других органов и систем. Приводятся современные данные о роли различных микроорганизмов в возникновении обострений ХОБЛ. Актуализируется информация о влиянии фактора недостаточного питания на характеристики течения ХОБЛ у пациентов и возможности его коррекции. Обозначены нерешенные вопросы и важность дальнейших исследований в указанном направлении.

Полный текст

Доступ закрыт

Об авторах

Дмитрий Юрьевич Костенко

ФГБОУ ВО «Дальневосточный государственный медицинский университет» Минздрава России

Автор, ответственный за переписку.
Email: mitiacostencko@yandex.ru
ORCID iD: 0000-0001-7057-8105

 кандидат медицинских наук, ассистент кафедры факультетской и поликлинической терапии с курсом эндокринологии

Россия, 680000, Хабаровск, ул. Карла Маркса, д. 35

Список литературы

  1. Клинические рекомендации. Хроническая обструктивная болезнь легких. Российское респираторное общество. Рубрикатор клинических рекомендаций Минздрава России. 2021. ID: 603. Доступ: https://cr.minzdrav.gov.ru/schema/603_2 (дата обращения – 01.09.2023). [Clinical guidelines. Chronic obstructive pulmonary disease. Russian Respiratory Society. Rubricator of clinical guidelines of the Ministry of Healthcare of Russia. 2021. ID: 603. URL: https://cr.minzdrav.gov.ru/schema/603_2 (date of access – 01.09.2023) (In Russ.)].
  2. Global Initiative for Chronic Obstructive Lung Disease. Global strategy for the diagnosis, management, and prevention of chronic obstructive pulmonary disease. Revised 2022. URL: https://goldcopd.org/archived-reports/ (date of access – 01.09.2023).
  3. Авдеев С.Н. Хроническая обструктивная болезнь легких: обострения. Пульмонология. 2013; (3): 5–19. [Avdeev S.N. Chronic obstructive pulmonary disease: Exacerbations. Pulmonologiya = Pulmonology. 2013; (3): 5–19 (In Russ.)]. EDN: RBJUHF.
  4. Donaldson G.C., Hurst J.R., Smith C.J. et al. Increased risk of myocardial infarction and stroke following exacerbation of COPD. Chest. 2010; 137(5): 1091–97. https://dx.doi.org/10.1378/chest.09-2029.
  5. Dransfield M.T., Kunisaki K.M., Strand M.J. et al.; COPDGene Investigators. Acute exacerbations and lung function loss in smokers with and without chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2017; 195(3): 324–30. https://dx.doi.org/10.1164/rccm.201605-1014OC.
  6. Suissa S., Dell’aniello S., Ernst P. Long-term natural history of chronic obstructive pulmonary disease: Severe exacerbations and mortality. Thorax. 2012; 67(11): 957–63. https://dx.doi.org/10.1136/thoraxjnl-2011-201518.
  7. Hill A.T., Campbell E.J., Hill S.L. et al. Association between airway bacterial load and markers of airway inflammation in patients with stable chronic bronchitis. Am J Med. 2000; 109(4): 288–95. https://dx.doi.org/10.1016/S0002-9343(00)00507-6.
  8. Patel I.S., Seemungal T.A.R., Wilks M. et al. Relationship between bacterial colonization and the frequency, character and severity of COPD exacerbations. Thorax. 2002; 57(9): 759–64. https://dx.doi.org/10.1136/thorax.57.9.759.
  9. Wang Z., Maschera B., Lea S. et al. Airway-host microbiome interactions in chronic obstructive pulmonary disease. Respir Res. 2019; 20(1): 113. https://dx.doi.org/10.1186/s12931-019-1085-z.
  10. Singh R., Mackay A.J., Patel A.R.C. et al. Inflammatory thresholds and the species-specific effects of colonizing bacteria in stable chronic obstructive pulmonary disease. Respir Res. 2014; 15(1): 114. https://dx.doi.org/10.1186/s12931-014-0114-1.
  11. Wang Z., Singh R., Miller B.E. et al. Sputum microbiome temporal variability and dysbiosis in chronic obstructive pulmonary disease exacerbations: An analysis of the COPDMAP study. Thorax. 2018; 73(4): 331–38. https://dx.doi.org/10.1136/thoraxjnl-2017-210741.
  12. Miravitlles M., Marin A., Monso E. et al. Efficacy of moxifloxacin in the treatment of bronchial colonization in COPD. Eur Respir J. 2009; 34(5): 1066–71. https://dx.doi.org/10.1183/09031936.00195608.
  13. Cameron R.J., de Wit D., Welsh T.N. et al. Virus infection in exacerbations of chronic obstructive pulmonary disease requiring ventilation. Intensive Care Med. 2006; 32(7): 1022–29. https://dx.doi.org/10.1007/s00134-006-0202-x.
  14. Bouquet J., Tabor D.E., Silver J.S. et al. Microbial burden and viral exacerbations in a longitudinal multicenter COPD cohort. Respir Res. 2020; 21(1): 77. https://dx.doi.org/10.1186/s12931-020-01340-0.
  15. McManus T.E., Marley A.-M., Baxter N. et al. Respiratory viral infection in exacerbations of COPD. Respir Med. 2008; 102(11): 1575–80. https://dx.doi.org/10.1016/j.rmed.2008.06.006.
  16. Mallia P., Message S.D., Gielen V. et al. Experimental rhinovirus infection as a human model of chronic obstructive pulmonary disease exacerbation. Am J Respir Crit Care Med. 2011; 183(6): 734–42. https://dx.doi.org/10.1164/rccm.201006-0833OC.
  17. Beekat-Berkani R., Wilkinson T., Buchy P. et al. Seasonal influenza vaccination in patients with COPD: A systematic literature review. BMC Pulm Med. 2017; 17(1): 79. https://dx.doi.org/10.1186/s12890-017-0420-8.
  18. Modestou M.A., Manzel L.J., El-Mahdy S. et al. Inhibition of IFN-γ-dependent antiviral airway epithelial defense by cigarette smoke. Respir Res. 2010; 11(1): 64. https://dx.doi.org/10.1186/1465-9921-11-64.
  19. Groskreutz D.J., Monick M.M., Babor E.C. et al. Cigarette smoke alters respiratory syncytial virus-induced apoptosis and replication. Am J Respir Cell Mol. Biol. 2009; 41(2): 189–98. https://dx.doi.org/10.1165/rcmb.2008-0131OC.
  20. Государственный реестр лекарственных средств Минздрава России. Доступ: https://grls.rosminzdrav.ru/ (дата обращения – 01.09.2023). [State Register of Medicines of the Ministry of Healthcare of Russia. URL: https://grls.rosminzdrav.ru/ (date of access – 01.09.2023) (In Russ.)].
  21. Радченко Е.В., Суховская О.А., Галанкин Т.Л. с соавт. Сетевой метаанализ: сравнение эффективности и безопасности частичных агонистов никотиновых ацетилхолиновых рецепторов варениклина и цитизина для лечения никотиновой зависимости. Обзоры по клинической фармакологии и лекарственной терапии. 2018; 16(4): 19–32. [Radchenko E.V., Sykhovskaya O.A., Galankin T.L. et al. Network meta-analysis: A comparison of effectiveness and safety of partial agonists of nicotinic acetylcholine receptors varenicline and cytisine for smoking cessation. Obzory po klinicheskoy farmakologii i lekarstvennoy terapii = Reviews on Clinical Pharmacology and Drug Therapy. 2018; 16(4): 19–32 (In Russ.)]. https://dx.doi.org/10.17816/RCF16419-32. EDN: YWXLKH.
  22. Papi A., Bellettato C.M., Braccioni F. et al. Infections and airway inflammation in chronic obstructive pulmonary disease severe exacerbations. Am J Respir Crit Care Med. 2006; 173(10): 1114–21. https://dx.doi.org/10.1164/rccm.200506-859OC.
  23. Mallia P., Footitt J., Sotero R. et al. Rhinovirus infection induces degradation of antimicrobial peptides and secondary bacterial infection in chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2012; 186(11): 1117–24. https://dx.doi.org/10.1164/rccm.201205-0806OC.
  24. Tong X., Cheng A., Xu H. et al. Aspergillus fumigatus during COPD exacerbation: A pair-matched retrospective study. BMC Pulm Med. 2018; 18(1): 55. https://dx.doi.org/10.1186/s12890-018-0611-y.
  25. Huerta A., Soler N., Esperatti M. et al. Importance of Aspergillus spp. isolation in acute exacerbations of severe COPD: Prevalence, factors and follow-up: The FUNGI-COPD study. Respir Res. 2014; 15(1): 17. https://dx.doi.org/10.1186/1465-9921-15-17.
  26. Wu Y.X., Zuo Y.H., Cheng Q.J. et al. Respiratory Aspergillus colonization was associated with relapse of acute exacerbation in patients with chronic obstructive pulmonary disease: Analysis of data from a retrospective cohort study. Front Med (Lausanne). 2021; 8: 640289. https://dx.doi.org/10.3389/fmed.2021.640289.
  27. Taccone F.S., Van den Abeele A., Bulpa P. et al. Epidemiology of invasive aspergillosis in critically ill patients: Clinical presentation, underlying conditions, and outcomes. Crit Care. 2015; 19(1): 7. https://dx.doi.org/10.1186/s13054-014-0722-7.
  28. Guinea J., Torres-Narbona M., Gijon P. et al. Pulmonary aspergillosis in patients with chronic obstructive pulmonary disease: Incidence, risk factors, and outcome. Clin Microbiol Infect. 2010; 16(7): 870–77. https://dx.doi.org/10.1111/j.1469-0691.2009.03015.x.
  29. Xue T., Ma Z., Liu F. et al. Pneumocystis jirovecii colonization and its association with pulmonary diseases: A multicenter study based on a modified loop-mediated isothermal amplification assay. BMC Pulm Med. 2020; 20(1): 70. https://dx.doi.org/10.1186/s12890-020-1111-4.
  30. Canas-Arboleda A., Hernandez-Florez C., Garzon J. et al. Colonization by Pneumocystis jirovecii in patients with chronic obstructive pulmonary disease: Association with exacerbations and lung function status. Braz J Infect Dis. 2019; 23(5): 352–57. https://dx.doi.org/10.1016/j.bjid.2019.08.008.
  31. Костенко Д.Ю., Зайкова-Хелимская И.В. Влияние пневмоцистной инфекции на клинические проявления хронической обструктивной болезни легких. Дальневосточный медицинский журнал. 2020; (3): 90–95. [Kostenko D.Yu., Zaikova-Khelimskaia I.V. Influence of Pneumocystis infection on clinical manifestations of chronic obstructive pulmonary disease. Dal’nevostochnyy meditsinskiy zhurnal = Far Eastern Medical Journal. 2020; (3): 90–95 (In Russ.)]. https://dx.doi.org/10.35177/1994-5191-2020-3-60-95. EDN: FTARTY.
  32. Костенко Д.Ю., Зайкова-Хелимская И.В. Оценка влияния и коррекции пневмоцистной инфекции на клинико-лабораторные характеристики хронической обструктивной болезни легких. Бюллетень физиологии и патологии дыхания. 2020; (78): 23–30. [Kostenko D.Y., Zaikova-Khelimskaia I.V. Evaluation of the influence and correction of pneumocystis infection on clinical and laboratory characteristics of chronic obstructive pulmonary disease. Byulleten’ fiziologii i patologii dykhaniya = Bulletin Physiology and Pathology of Respiration. 2020; (78): 23–30 (In Russ.)]. https://dx.doi.org/10.36604/1998-5029-2020-78-23-30. EDN: JAEJNY.
  33. Драпкина О.М., Авдеев С.Н., Будневский А.В. с соавт. Пищевой статус и парадокс ожирения при хронической обструктивной болезни легких. Вопросы питания. 2021; 90(6): 42–49. [Drapkina O.M., Avdeev S.N., Budnevsky A.V. et al. Nutritional status and the obesity paradox in chronic obstructive pulmonary disease. Voprosy pitaniya = Nutrition Issues. 2021; 90(6): 42–49 (In Russ.)]. https://dx.doi.org/10.33029/0042-8833-2021-90-6-42-49. EDN: YHYKEL.
  34. Katsura H., Yamada K., Kida K. Both generic and disease specific health related quality of life are deteriorated in patients with underweight COPD. Respir Med. 2005; 99(5): 624–30. https://dx.doi.org/10.1016/j.rmed.2004.09.017.
  35. Marco E., Sanchez-Rodriguez D., Davalos-Yerovi V.N. et al. Malnutrition according to ESPEN consensus predicts hospitalizations and long-term mortality in rehabilitation patients with stable chronic obstructive pulmonary disease. Clin Nutr. 2019; 38(5): 2180–86. https://dx.doi.org/10.1016/j.clnu.2018.09.014.
  36. Yazdanpanah L., Shidfar F., Moosavi A.J. et al. Energy and protein intake and its relationship with pulmonary function in chronic obstructive pulmonary disease (COPD) patients. Acta Med Iran. 2010; 48(6): 374–79.
  37. Luo Y., Zhou L., Li Y. et al. Fat-free mass index for evaluating the nutritional status and disease severity in COPD. Respir Care. 2016; 61(5): 680–88. https://dx.doi.org/10.4187/respcare.04358.
  38. Hallin R., Koivisto-Hursti U.K., Lindberg E. et al. Nutritional status, dietary energy intake and the risk of exacerbations in patients with chronic obstructive pulmonary disease (COPD). Respir Med. 2006 Mar; 100(3): 561–67. https://dx.doi.org/10.1016/j.rmed.2005.05.020.
  39. Hoong J.M., Ferguson M., Hukins C. et al. Economic and operational burden associated with malnutrition in chronic obstructive pulmonary disease. Clin Nutr. 2017; 36(4): 1105–9. https://dx.doi.org/10.1016/j.clnu.2016.07.008.
  40. Sugawara K., Takahashi H., Kasai C. et al. Effects of nutritional supplementation combined with low-intensity exercise in malnourished patients with COPD. Respir Med. 2010; 104(12): 1883–89. https://dx.doi.org/10.1016/j.rmed.2010.05.008.
  41. Keogh E., Mark Williams E. Managing malnutrition in COPD: A review. Respir Med. 2021; 176: 106248. https://dx.doi.org/10.1016/j.rmed.2020.106248.
  42. Ahnfeldt-Mollerup P., Hey H., Johansen C. et al. The effect of protein supplementation on quality of life, physical function, and muscle strength in patients with chronic obstructive pulmonary disease. Eur J Phys Rehabil Med. 2015; 51(4): 447–56.
  43. van de Bool C., Rutten E.P.A., van Helvoort A. et al. A randomized clinical trial investigating the efficacy of targeted nutrition as adjunct to exercise training in COPD. J Cachexia Sarcopenia Muscle. 2017; 8(5): 748–58. https://dx.doi.org/10.1002/jcsm.12219.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© ООО «Бионика Медиа», 2023

Данный сайт использует cookie-файлы

Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie, которые обеспечивают правильную работу сайта.

О куки-файлах