The COPD exacerbations equation: What do we know about variables? (Literature review)

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

The review article summarizes information about the problem of exacerbations of chronic obstructive pulmonary disease (COPD). The consequences of exacerbations of COPD on the progression of the disease and the risks of complications from other organs and systems are considered. The current data on the significance of various microorganisms for the occurrence of exacerbations of COPD are summarized. The information about the influence of the malnutrition factor on the characteristics of the course of COPD in patients and the possibility of its correction is being updated. The review identifies unresolved issues and the importance of further research in the described direction.

Full Text

Restricted Access

About the authors

Dmitry Yu. Kostenko

Far Eastern State Medical University of the Ministry of Healthcare of Russia

Author for correspondence.
Email: mitiacostencko@yandex.ru
ORCID iD: 0000-0001-7057-8105

PhD in Medical Sciences, assistant at the Faculty and polyclinic therapy department with a course of endocrinology

Russian Federation, 680000, Khabarovsk, 35 Karla Marksa Str.

References

  1. Клинические рекомендации. Хроническая обструктивная болезнь легких. Российское респираторное общество. Рубрикатор клинических рекомендаций Минздрава России. 2021. ID: 603. Доступ: https://cr.minzdrav.gov.ru/schema/603_2 (дата обращения – 01.09.2023). [Clinical guidelines. Chronic obstructive pulmonary disease. Russian Respiratory Society. Rubricator of clinical guidelines of the Ministry of Healthcare of Russia. 2021. ID: 603. URL: https://cr.minzdrav.gov.ru/schema/603_2 (date of access – 01.09.2023) (In Russ.)].
  2. Global Initiative for Chronic Obstructive Lung Disease. Global strategy for the diagnosis, management, and prevention of chronic obstructive pulmonary disease. Revised 2022. URL: https://goldcopd.org/archived-reports/ (date of access – 01.09.2023).
  3. Авдеев С.Н. Хроническая обструктивная болезнь легких: обострения. Пульмонология. 2013; (3): 5–19. [Avdeev S.N. Chronic obstructive pulmonary disease: Exacerbations. Pulmonologiya = Pulmonology. 2013; (3): 5–19 (In Russ.)]. EDN: RBJUHF.
  4. Donaldson G.C., Hurst J.R., Smith C.J. et al. Increased risk of myocardial infarction and stroke following exacerbation of COPD. Chest. 2010; 137(5): 1091–97. https://dx.doi.org/10.1378/chest.09-2029.
  5. Dransfield M.T., Kunisaki K.M., Strand M.J. et al.; COPDGene Investigators. Acute exacerbations and lung function loss in smokers with and without chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2017; 195(3): 324–30. https://dx.doi.org/10.1164/rccm.201605-1014OC.
  6. Suissa S., Dell’aniello S., Ernst P. Long-term natural history of chronic obstructive pulmonary disease: Severe exacerbations and mortality. Thorax. 2012; 67(11): 957–63. https://dx.doi.org/10.1136/thoraxjnl-2011-201518.
  7. Hill A.T., Campbell E.J., Hill S.L. et al. Association between airway bacterial load and markers of airway inflammation in patients with stable chronic bronchitis. Am J Med. 2000; 109(4): 288–95. https://dx.doi.org/10.1016/S0002-9343(00)00507-6.
  8. Patel I.S., Seemungal T.A.R., Wilks M. et al. Relationship between bacterial colonization and the frequency, character and severity of COPD exacerbations. Thorax. 2002; 57(9): 759–64. https://dx.doi.org/10.1136/thorax.57.9.759.
  9. Wang Z., Maschera B., Lea S. et al. Airway-host microbiome interactions in chronic obstructive pulmonary disease. Respir Res. 2019; 20(1): 113. https://dx.doi.org/10.1186/s12931-019-1085-z.
  10. Singh R., Mackay A.J., Patel A.R.C. et al. Inflammatory thresholds and the species-specific effects of colonizing bacteria in stable chronic obstructive pulmonary disease. Respir Res. 2014; 15(1): 114. https://dx.doi.org/10.1186/s12931-014-0114-1.
  11. Wang Z., Singh R., Miller B.E. et al. Sputum microbiome temporal variability and dysbiosis in chronic obstructive pulmonary disease exacerbations: An analysis of the COPDMAP study. Thorax. 2018; 73(4): 331–38. https://dx.doi.org/10.1136/thoraxjnl-2017-210741.
  12. Miravitlles M., Marin A., Monso E. et al. Efficacy of moxifloxacin in the treatment of bronchial colonization in COPD. Eur Respir J. 2009; 34(5): 1066–71. https://dx.doi.org/10.1183/09031936.00195608.
  13. Cameron R.J., de Wit D., Welsh T.N. et al. Virus infection in exacerbations of chronic obstructive pulmonary disease requiring ventilation. Intensive Care Med. 2006; 32(7): 1022–29. https://dx.doi.org/10.1007/s00134-006-0202-x.
  14. Bouquet J., Tabor D.E., Silver J.S. et al. Microbial burden and viral exacerbations in a longitudinal multicenter COPD cohort. Respir Res. 2020; 21(1): 77. https://dx.doi.org/10.1186/s12931-020-01340-0.
  15. McManus T.E., Marley A.-M., Baxter N. et al. Respiratory viral infection in exacerbations of COPD. Respir Med. 2008; 102(11): 1575–80. https://dx.doi.org/10.1016/j.rmed.2008.06.006.
  16. Mallia P., Message S.D., Gielen V. et al. Experimental rhinovirus infection as a human model of chronic obstructive pulmonary disease exacerbation. Am J Respir Crit Care Med. 2011; 183(6): 734–42. https://dx.doi.org/10.1164/rccm.201006-0833OC.
  17. Beekat-Berkani R., Wilkinson T., Buchy P. et al. Seasonal influenza vaccination in patients with COPD: A systematic literature review. BMC Pulm Med. 2017; 17(1): 79. https://dx.doi.org/10.1186/s12890-017-0420-8.
  18. Modestou M.A., Manzel L.J., El-Mahdy S. et al. Inhibition of IFN-γ-dependent antiviral airway epithelial defense by cigarette smoke. Respir Res. 2010; 11(1): 64. https://dx.doi.org/10.1186/1465-9921-11-64.
  19. Groskreutz D.J., Monick M.M., Babor E.C. et al. Cigarette smoke alters respiratory syncytial virus-induced apoptosis and replication. Am J Respir Cell Mol. Biol. 2009; 41(2): 189–98. https://dx.doi.org/10.1165/rcmb.2008-0131OC.
  20. Государственный реестр лекарственных средств Минздрава России. Доступ: https://grls.rosminzdrav.ru/ (дата обращения – 01.09.2023). [State Register of Medicines of the Ministry of Healthcare of Russia. URL: https://grls.rosminzdrav.ru/ (date of access – 01.09.2023) (In Russ.)].
  21. Радченко Е.В., Суховская О.А., Галанкин Т.Л. с соавт. Сетевой метаанализ: сравнение эффективности и безопасности частичных агонистов никотиновых ацетилхолиновых рецепторов варениклина и цитизина для лечения никотиновой зависимости. Обзоры по клинической фармакологии и лекарственной терапии. 2018; 16(4): 19–32. [Radchenko E.V., Sykhovskaya O.A., Galankin T.L. et al. Network meta-analysis: A comparison of effectiveness and safety of partial agonists of nicotinic acetylcholine receptors varenicline and cytisine for smoking cessation. Obzory po klinicheskoy farmakologii i lekarstvennoy terapii = Reviews on Clinical Pharmacology and Drug Therapy. 2018; 16(4): 19–32 (In Russ.)]. https://dx.doi.org/10.17816/RCF16419-32. EDN: YWXLKH.
  22. Papi A., Bellettato C.M., Braccioni F. et al. Infections and airway inflammation in chronic obstructive pulmonary disease severe exacerbations. Am J Respir Crit Care Med. 2006; 173(10): 1114–21. https://dx.doi.org/10.1164/rccm.200506-859OC.
  23. Mallia P., Footitt J., Sotero R. et al. Rhinovirus infection induces degradation of antimicrobial peptides and secondary bacterial infection in chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2012; 186(11): 1117–24. https://dx.doi.org/10.1164/rccm.201205-0806OC.
  24. Tong X., Cheng A., Xu H. et al. Aspergillus fumigatus during COPD exacerbation: A pair-matched retrospective study. BMC Pulm Med. 2018; 18(1): 55. https://dx.doi.org/10.1186/s12890-018-0611-y.
  25. Huerta A., Soler N., Esperatti M. et al. Importance of Aspergillus spp. isolation in acute exacerbations of severe COPD: Prevalence, factors and follow-up: The FUNGI-COPD study. Respir Res. 2014; 15(1): 17. https://dx.doi.org/10.1186/1465-9921-15-17.
  26. Wu Y.X., Zuo Y.H., Cheng Q.J. et al. Respiratory Aspergillus colonization was associated with relapse of acute exacerbation in patients with chronic obstructive pulmonary disease: Analysis of data from a retrospective cohort study. Front Med (Lausanne). 2021; 8: 640289. https://dx.doi.org/10.3389/fmed.2021.640289.
  27. Taccone F.S., Van den Abeele A., Bulpa P. et al. Epidemiology of invasive aspergillosis in critically ill patients: Clinical presentation, underlying conditions, and outcomes. Crit Care. 2015; 19(1): 7. https://dx.doi.org/10.1186/s13054-014-0722-7.
  28. Guinea J., Torres-Narbona M., Gijon P. et al. Pulmonary aspergillosis in patients with chronic obstructive pulmonary disease: Incidence, risk factors, and outcome. Clin Microbiol Infect. 2010; 16(7): 870–77. https://dx.doi.org/10.1111/j.1469-0691.2009.03015.x.
  29. Xue T., Ma Z., Liu F. et al. Pneumocystis jirovecii colonization and its association with pulmonary diseases: A multicenter study based on a modified loop-mediated isothermal amplification assay. BMC Pulm Med. 2020; 20(1): 70. https://dx.doi.org/10.1186/s12890-020-1111-4.
  30. Canas-Arboleda A., Hernandez-Florez C., Garzon J. et al. Colonization by Pneumocystis jirovecii in patients with chronic obstructive pulmonary disease: Association with exacerbations and lung function status. Braz J Infect Dis. 2019; 23(5): 352–57. https://dx.doi.org/10.1016/j.bjid.2019.08.008.
  31. Костенко Д.Ю., Зайкова-Хелимская И.В. Влияние пневмоцистной инфекции на клинические проявления хронической обструктивной болезни легких. Дальневосточный медицинский журнал. 2020; (3): 90–95. [Kostenko D.Yu., Zaikova-Khelimskaia I.V. Influence of Pneumocystis infection on clinical manifestations of chronic obstructive pulmonary disease. Dal’nevostochnyy meditsinskiy zhurnal = Far Eastern Medical Journal. 2020; (3): 90–95 (In Russ.)]. https://dx.doi.org/10.35177/1994-5191-2020-3-60-95. EDN: FTARTY.
  32. Костенко Д.Ю., Зайкова-Хелимская И.В. Оценка влияния и коррекции пневмоцистной инфекции на клинико-лабораторные характеристики хронической обструктивной болезни легких. Бюллетень физиологии и патологии дыхания. 2020; (78): 23–30. [Kostenko D.Y., Zaikova-Khelimskaia I.V. Evaluation of the influence and correction of pneumocystis infection on clinical and laboratory characteristics of chronic obstructive pulmonary disease. Byulleten’ fiziologii i patologii dykhaniya = Bulletin Physiology and Pathology of Respiration. 2020; (78): 23–30 (In Russ.)]. https://dx.doi.org/10.36604/1998-5029-2020-78-23-30. EDN: JAEJNY.
  33. Драпкина О.М., Авдеев С.Н., Будневский А.В. с соавт. Пищевой статус и парадокс ожирения при хронической обструктивной болезни легких. Вопросы питания. 2021; 90(6): 42–49. [Drapkina O.M., Avdeev S.N., Budnevsky A.V. et al. Nutritional status and the obesity paradox in chronic obstructive pulmonary disease. Voprosy pitaniya = Nutrition Issues. 2021; 90(6): 42–49 (In Russ.)]. https://dx.doi.org/10.33029/0042-8833-2021-90-6-42-49. EDN: YHYKEL.
  34. Katsura H., Yamada K., Kida K. Both generic and disease specific health related quality of life are deteriorated in patients with underweight COPD. Respir Med. 2005; 99(5): 624–30. https://dx.doi.org/10.1016/j.rmed.2004.09.017.
  35. Marco E., Sanchez-Rodriguez D., Davalos-Yerovi V.N. et al. Malnutrition according to ESPEN consensus predicts hospitalizations and long-term mortality in rehabilitation patients with stable chronic obstructive pulmonary disease. Clin Nutr. 2019; 38(5): 2180–86. https://dx.doi.org/10.1016/j.clnu.2018.09.014.
  36. Yazdanpanah L., Shidfar F., Moosavi A.J. et al. Energy and protein intake and its relationship with pulmonary function in chronic obstructive pulmonary disease (COPD) patients. Acta Med Iran. 2010; 48(6): 374–79.
  37. Luo Y., Zhou L., Li Y. et al. Fat-free mass index for evaluating the nutritional status and disease severity in COPD. Respir Care. 2016; 61(5): 680–88. https://dx.doi.org/10.4187/respcare.04358.
  38. Hallin R., Koivisto-Hursti U.K., Lindberg E. et al. Nutritional status, dietary energy intake and the risk of exacerbations in patients with chronic obstructive pulmonary disease (COPD). Respir Med. 2006 Mar; 100(3): 561–67. https://dx.doi.org/10.1016/j.rmed.2005.05.020.
  39. Hoong J.M., Ferguson M., Hukins C. et al. Economic and operational burden associated with malnutrition in chronic obstructive pulmonary disease. Clin Nutr. 2017; 36(4): 1105–9. https://dx.doi.org/10.1016/j.clnu.2016.07.008.
  40. Sugawara K., Takahashi H., Kasai C. et al. Effects of nutritional supplementation combined with low-intensity exercise in malnourished patients with COPD. Respir Med. 2010; 104(12): 1883–89. https://dx.doi.org/10.1016/j.rmed.2010.05.008.
  41. Keogh E., Mark Williams E. Managing malnutrition in COPD: A review. Respir Med. 2021; 176: 106248. https://dx.doi.org/10.1016/j.rmed.2020.106248.
  42. Ahnfeldt-Mollerup P., Hey H., Johansen C. et al. The effect of protein supplementation on quality of life, physical function, and muscle strength in patients with chronic obstructive pulmonary disease. Eur J Phys Rehabil Med. 2015; 51(4): 447–56.
  43. van de Bool C., Rutten E.P.A., van Helvoort A. et al. A randomized clinical trial investigating the efficacy of targeted nutrition as adjunct to exercise training in COPD. J Cachexia Sarcopenia Muscle. 2017; 8(5): 748–58. https://dx.doi.org/10.1002/jcsm.12219.

Supplementary files

Supplementary Files
Action
1. JATS XML

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies